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Abstract
Background: Basic research identified oncogenic driver mutations in lung
cancer (LC). However, <10% of patients carry driver mutations. Thus, most
patients are not recommended for first-line kinase inhibitor (KI)–based ther-
apies. Through enabling technologies and bioinformatics, we gained deep
insight into patient-specific signalling networks which permitted novel KI-based
treatment options in LC.
Methods:We performedmolecular pathology, transcriptomics andmiRNA pro-
filing across 95 well-characterized LC patients. We confirmed results based on
cross-linked immunoprecipitation-sequencing data, and used N = 524 adeno-
and 497 squamous cell carcinomas as validation sets.We employed the PamGene
platform to identify aberrant kinases, validated the results by evaluating indepen-
dent siRNA and CRISPR-mediated mRNA knockdown studies in human LC cell
lines.
Results: Transcriptomics revealed 439, 1240, 383 and 320 significantly upregu-
lated genes, respectively, for adeno-, squamous, neuroendocrine and metastatic
cases, and there are 1092, 1477, 609 and 1267 downregulated DEGs. Based on gene
enrichment analysis and experimentally validatedmiRNA–gene interactions, we
constructed regulatory networks specific for adeno-, squamous, neuroendocrine
and metastatic LC. Molecular profiling discovered 137 significantly upregulated
kinases (range 2–26-fold) ofwhich 65 and 72, respectively, are tyrosine and serine-
threonine kinases while 6 kinases carry driver mutations. Meanwhile, there are
21 kinases commonly upregulated irrespective of the histological type of LC.
Bioinformatics decoded networks in which kinases function as master regula-
tors. Typically, the networks consisted of 14, 9, 16 and 19 highly regulated kinases
in adeno-, squamous, neuroendocrine and metastatic LC. Inhibition of kinases
which function as master regulators disrupted the signalling networks, and their
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gene knock-down studies confirmed inhibition of cell proliferation in a panel
of human LC cell lines. Additionally, the proposed molecular profiling enables
KI-based therapies in patients with acquired drug resistance.
Conclusions: Our study broadens the perspective of KI-based therapies in LC,
and we propose a framework to overcome acquired drug resistance.

KEYWORDS
kinase inhibitor, lung cancer, neoadjuvant therapy, precision medicine

1 BACKGROUND

Lung cancer (LC) is the second most frequently diagnosed
cancer worldwide and despite significant progress in its
treatment, LC remains the primary cause of cancer death.
By large, LC is a preventable disease, and according to
Cancer Research UK, tobacco product use, occupation and
air pollution accounts for 72%, 13% and 8%, respectively, of
the disease burden (https://www.cancerresearchuk.org/
health-professional/cancer-statistics/statistics-by-cancer-
type/lung-cancer/risk-factors). Furthermore, about 70%
of LC patients are diagnosed at advanced-stages of
disease.1
Over the last decade, an amazing progress in LC therapy

has been achieved with significant reductions in surgi-
cal complications due to minimal invasive approaches,
that is, video-assisted thoracoscopic surgery over open
thoracotomy, improvements in radiotherapy and molec-
ular testing and new concepts for systemic and tar-
geted therapy. Nowadays, immune checkpoint inhibitors
(ICIs) and chemotherapeutics are the mainstay of therapy,
while patients with driver mutations are given targeted
therapies.2,3
In general, LC is divided into small (SCLC) and non–

small cell carcinoma (NSCLC), and the latter group
accounts for about 80%–85%.NSCLC is further divided into
adeno- (AD), squamous cell (SQ) and other histological
subtypes such as large-cell carcinoma,4 and AD patients
may harbour common oncogenic driver alterations, that is,
Kirsten rat sarcoma virus (KRAS, about 30%), epidermal
growth factor receptor (EGFR) (14%–30%), BRAF (5%–7%),
anaplastic lymphoma receptor (ALK) (1%–5%),METProto-
Oncogene, Receptor Tyrosine Kinase (METs) (1%–3%) and
ERBB2 (2%–6%).5,6 Moreover, among SQ patients, genetic
alterations have been reported for phosphatidylinositol 3-
kinase, fibroblast growth factor receptor 1 and phosphatase
and tensin homolog. However, there are also about 30%–
40% of patients without driver mutations.7 Frequently,
these patients fail in first-line platinum salt and paclitaxel
chemotherapy,8 and given their poor prognosis, there is
an unmet need to develop improved treatment algorithms
based on an individual patient requirement. In fact, a
recent US-based cross-sectional study of >106,000 NSCLC

patients revealed that less than 10%of LCpatients are given
targeted therapies. However, 85% of NSCLC patients are
tested for common driver mutations.9
With the advent of enabling technologies, it is possible

and cost effective to collect genomic, genetic and kinome
profiling data and use this information for precision oncol-
ogy that is tailored to an individual patient’s demand. In
fact, we are empowered to extend the therapeutic scope of
kinase inhibitors (KI) beyond oncogenic driver mutations,
and to expand the spectrum of personalized treatment
schemes for inoperable LC patients by utilizing single or
combined treatment algorithms. The same approach is
used for patients who acquired drug resistance following
specific KI use.
Undoubtedly, sustained signalling is one of the hall-

marks of tumour growth,10 and deregulation of kinases
provides a strong molecular rationale to broaden the per-
spective of kinase inhibitor–based therapies. So far, the
possibilities to block signalling events in cancer patients
have been underutilized, and with >80 Food and Drug
Administration (FDA)–approved kinase inhibitors,11 alter-
natives exist to develop personalized therapies by targeting
aberrant signalling pathways. Depending on the size and
anatomical location, neoadjuvant therapies may also sup-
port the down-staging of tumours, and therefore, patients
become eligible for surgical interventions.
Here, we describe the prospect to develop new treat-

ment algorithms based on 24 kinase targets, all of which
were significantly upregulated in resectable lung tumours.
So far, 83 FDA-approved drugs are available which inhibit
these 24 kinases. Yet, only 20 drugs are used for the treat-
ment of NSCLC and are primarily inhibitors of EGFR, RET
receptor (RET), ALK and MET.
We and others reported the utility of predictive and

prognostic blood borne miRNA candidates for precision
medicine in LC with predictive biomarkers allowing an
evaluation of treatment response to adjuvant or neoadju-
vant therapy.12,13 Moreover, certain miRNAs inform on the
histological subtype of LC.
Together, we investigated 95 LC patients diagnosed

with AD and SQ, neuroendocrine tumours (NET) and
metastatic tumours (MT), and performed whole-genome
transcript profiling to identify disease-regulated genes and

 20011326, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctm

2.70177, W
iley O

nline L
ibrary on [20/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/risk-factors
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/risk-factors
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/risk-factors


ZHONG et al. 3 of 25

miRNAs. Through bioinformatics, we identified disease-
dependent gene–miRNA regulatory networks, and based
on kinome profiling and signalling network analysis, we
identified kinases, which function as master regulators
(MRs) in such networks. Our study provides a strong
rationale for their inhibition, and we propose new and
personalized treatment algorithms of LC to broaden the
perspective of precision oncology.

2 METHODS

2.1 Patients and specimens

The ethics committee of HannoverMedical School (MHH)
approved the use of tissue resectionmaterialof LC patients
who received surgery atMHHduring the period 2017–2022
(approval ID: 3381-2016). We obtained informed consent
from all patients. Board-certified pathologists examined
matched non-tumours adjacent and tumour tissue, and
we summarize the clinicopathological data in Table 1 and
Table S1.
The study cohort of 95 LC patients consisted of 54 adeno-

carcinomas (22f, 32m); 23 SQ (9f, 14m); 9 neuroendocrine
(4f, 5m) and 9 metastatic tumours (4f, 5m). In regards
to the NET, there are four and two cases, respectively, of
large-cell and small-cell carcinoma and three carcinoids.
The lung metastatic tumours originate from three renal
cell carcinoma, two colorectal cancers, one melanoma,
one endometrial, one cholangiocarcinoma and one neu-
roendocrine cancer. Further information is given in
Table S2.

2.2 RNA extraction

We used the miRNeasy Mini Kit (Qiagen) to isolate total
RNA from frozen lung tissues according to manufac-
turer’s recommendation and determined its quantity and
purity with the NanoDrop ND-1000 system. Addition-
ally, we evaluated the purity of RNA with the nanoVette
system (Beckman Coulter DU 730 UV/Vis Spectropho-
tometer) and considered RNA extracts with a ratio of ∼2.0
at 260/280 nm as acceptable for further analysis.Moreover,
we assessed the integrity of the 18S and 28S riboso-
mal bands on denaturing agarose gels, and representative
examples are shown in Figure S1.

2.3 Whole-genome gene expression
profiling

We used the GeneChip 3’IVT Plus reagent kit (Thermo
Fischer Scientific) according to the manufacturer’s recom-

mendation and initiated first- and second-strand cDNA
synthesis with 100 ng of total RNA. We performed in vitro
transcription with biotinylated ribonucleotide analogues
and purified cRNA with magnetic beads. We quantified
cRNA in a Beckman Coulter DU 730 UV/Vis Spectropho-
tometer (Beckman Coulter) and estimated the absorption
ratio at 260/280 nm. We prepared cleaved cRNA with
the fragmentation buffer and determined the size of the
fragmented biotinylated cRNA by denaturing agarose elec-
trophoresis. For this purpose, we mixed 9.4 µg labelled
cRNAwith 3′ fragmentation buffer and incubated the sam-
ples at 94◦C for 35 min, followed by an incubation step
at 4◦C for ≥2 min. We assessed the quality of fragmented
cRNA on denaturing agarose gels. Typically, we obtained
fragments of the size of about 100 nt.
We hybridized 6 µg of the fragmented cRNA onto the

GeneChip R© HG-U133 array strips and placed them into
a GeneAtlas Hybridization Station according to manufac-
turer’s instruction. Following hybridization at 45◦C for
16 h, we initiated the washing and staining step in a
GeneAtlas R© Fluidics Station. Subsequently, we scanned
the microarrays on a GeneAtlas R© Imaging Station. We
processed microarrays, which passed the quality controls
(polyA, oligoB2 and 20XEHC) and performed in-depth
data analysis as described below.

2.4 Whole-genomemiRNA profiling

We labelled 700 ng of total RNA with the FlashTagTM
Biotin HSR RNA Labelling Kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions. The assay
involves a two-step reaction, that is, poly(A) tailing and
biotin ligation. The labelled samples were hybridized onto
theAffymetrix GeneChip R©miRNA array 4.1 (Affymetrix),
at 48◦C for 20 h. Subsequently, we placed the arrays
into the GeneAtlas R© Fluidics Station and initiated the
wash and stain protocol according to the manufac-
turer’s recommendation. We scanned the microarrays
with the GeneAtlas R© Imaging Station and processed the
images with the GeneAtlas Instrument Control Software
(Affymetrix) to generate CEL files. We processed microar-
rays, which passed the quality controls (polyA, oligoB2
and 20XEHC) and performed in-depth data analysis as
described below.

2.5 Lung cancer kinome profiling

The assay is based on the PamGene technology (www.
pamgene.com), which enables the real-time monitoring
of kinase activity. Essentially, the assay determines the
phosphorylation of canonical peptides of kinases. We per-
formed kinome profiling for 54 patients by considering
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TABLE 1 Patient characteristics.

Characteristic
Adenocarcinoma
(N = 54)

Squamous cell
carcinoma (N = 23)

Neuroendocrine
tumour (N = 9)

Metastatic
tumour (N = 9)

Age, years
Median 71.5 74 73 59
Range 28–91 49–87 57–82 23–82

Sex
Female 22 (40.7%) 9 (39.1%) 4 (44.4%) 4 (44.4%)
Male 32 (59.3%) 14 (60.9%) 5 (55.6%) 5 (55.6%)

Smoking status
Never smoker 24 (44.4%) 8 (34.8%) 4 (44.4%) 4 (44.4%)
Former smoker 5 (9.3%) 1 (4.3%) 1 (11.1%) 0 (0%)
Current smoker 22 (40.7%) 14 (60.9%) 4 (44.4%) 2 (22.2%)
N/A 3 (5.6%) 0 (0%) 0 (0%) 3 (33.3%)

TNM stage at diagnosis
I–II 38 (70.4%) 11 (47.8%) 5 (55.6%) 0 (0%)
IIIA 7 (13.0%) 9 (39.1%) 3 (33.3%) 0 (0%)
IIIB 2 (3.7%) 1 (4.3%) 0 0 (0%)
IV 2 (3.7%) 0 (0%) 0 9 (100%)
N/A 5 (9.3%) 2 (8.7%) 1 (11.1%) 0 (0%)

Treatment prior to surgery
Yes 0 (0%) 3 (13.0%) 0 (0%) 100 (100%)
No 100 (100%) 20 (87%) 100 (100%) 0 (0%)

EGFR mutation
Yes 1 (1.8%) 0 (0%) 0 (0%) 0 (0%)
No 22 (40.7%) 4 (17.4%) 1 (11.1%) 0 (0%)
N/A 31 (57.4%) 19 (82.6%) 8 (88.9%) 100 (100%)

TP53 mutation
Yes 8 (14.8%) 3 (13.0%) 1 (11.1%) 0 (0%)
No 15 (27.8%) 1 (4.3%) 0 (0%) 0 (0%)
N/A 31 (57.4%) 19 (82.6%) 8 (88.9%) 100 (100%)

KRAS mutation/amplification
Yes 16 (29.6%) 1 (4.3%) 0 (0%) 0 (0%)
No 7 (13.0%) 3 (13.0%) 1 (11.1%) 0 (0%)
N/A 31 (57.4%) 19 (82.6%) 8 (88.9%) 100 (100%)

PD-1 expression
<1% 17(31.5%) 16 (69.6%) 2 (22.2%) 2 (22.2%)
≥1% 29 (53.7%) 3 (13.0%) 2 (22.2%) 0 (0%)
N/A 8 (14.8%) 4 (17.4%) 5 (55.6%) 7 (77.8%)

Abbreviations: EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma virus; TNM, Tumour Node Metastasis.

tumour and histologically proven adjacent non-tumour
tissue, and we compile information regarding patient
demographics and tumour pathology in Table S2.
We performed all reactions on ice and placed frozen

tissue of the size of about 1–3 mm3 into a Eppendorf
tube. We added 100 µL M-PER buffer (Thermo Fisher
Scientific), which contained 2× protease and phosphatase
inhibitor cocktails (Thermo Fischer Scientific) and gently

mixed the samples. We incubated the lysates on ice for
60 min, followed by a centrifugation step at 4◦C and
15 000 ×g for 15 min and collected 10 µL aliquots of the
supernatant. These were immediately snap-frozen and
stored at−80◦C.We determined the protein concentration
with the Bradford assay (Thermo Fischer Scientific) and
performed protein tyrosine (PTK) and serine/threonine
kinase (STK) assays according to the manufacturer’s
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protocols using the PamStation 12 platform (PamGene
International BV) as previously described.14 For the PTK
assays, we added 1x PK buffer, 1% BSA (bovine serum
albumin), 1 M DDT (dichloro-diphenyl-trichloroethane)
solution, 10% of PTK additive and 4mMATP (PTK reagent
kit; article 32112.5, PamGene) to 5 µg of protein lysate in
a final volume of 20 µL. The PTK assay buffer contained
a fluorescein isothiocyanate (FITC)-conjugated PY-20
antibody, which recognizes phosphorylation sites of 196
peptides. For the STK assay, we added 1 µg of protein
lysate 1x PK buffer, 1% BSA and 4 mM ATP (provided
by PamGene, STK kit) to 1 µg of protein lysate in a final
volume of 20 µL. The STK chip allowed an assessment
of 144 peptides simultaneously. Unlike the PTK assay,
we added a FITC-conjugated antibody at the last cycle of
the STK assay (Cycle 94) and measured the signal of the
antibody, which recognizes phosphorylated peptides. We
analysed the data with the Bio Navigator software version
6.2 (PamGene International BV).

2.6 Data processing

2.7 Identification of differentially
expressed genes and miRNAs

2.7.1 Hannover cohort

The genomic analysis consisted of 56 LC patients (Table
S1), and included 32 AD, 14 SQ, 4 NET and 6 MT cases.
Additionally, the genome-wide miRNA profiling involved
70 cases. Here, the cohort consisted of 43 AD, 14 SQ, 6
NET and 7 MT cases. Table S2 provides an overview of the
patient demographics and diagnostic information (pathol-
ogy, clinical stage etc.). Most data sets are matched, that
is, for the same biopsy, we obtained genomic and miRNA
data.
We uploaded CEL files to the Transcriptome Analysis

Console 4.0.2 (Thermo Fisher Scientific) and the geneX-
plain platform. We normalized the data with the Robust
Multi-array Average method and separately computed the
principal component analysis for the gene and miRNA
expression data (Figure S2). This defined 8% and 10% of
cases, respectively, as outliers, that is, the samples were
intermingled with controls (non-cancerous adjacent tissue
(NATs)). Consequently, outliers were excluded from fur-
ther analysis. To find differentially expressed genes (DEGs)
and miRNAs (DEMs), we computed the linear models for
microarray data (LIMMA) package and corrected for mul-
tiple testing by applying a false discovery rate (FDR) at
alpha 0.05. Only DEGs/DEMs with an FDR-adjusted p-
value < 0.05 and a |fold change (FC)| ≥ 2 qualified for
in-depth analysis.

2.7.2 The Cancer Genome Atlas Program
(TCGA) cohort

We used the TCGA biolinks package to download raw
counts for genes and miRNA expression data.15 Only
matched data sets, that is, LC patients with gene and
miRNA information were included. The lung adenocar-
cinoma (LUAD) data sets consisted of 524 cases and 58
non-cancerous adjacent tissue (NATs). Similarly, the lung
squamous carcinoma (LUSC) data sets consisted of 497
cases and 51 NATs.15 We used LIMMA16 to normalize the
data and to define DEGs/DEMs by applying the follow-
ing criteria: FDR-adjusted p-value < 0.05, a |FC| ≥ 2 in
≥50% of cases. All calculations were performed in R ver-
sion 4.3.0.17 We separated the data by clinical stages and
compared significant DEGs between the Hannover and
TCGA cohorts. Of note, the DEGs are derived from two
different platforms, that is, microarray and RNAseq, and
although RNAseq revealed more DEGs in LC patients,
>70% of DEGs are common between the two cohorts. We
only considered commonly regulated genes of the two
genomic platforms and selected top-ranking ones for gene
enrichment analysis, that is, KEGG (Kyoto Encyclopedia
of Genes and Genomes) and hallmark gene sets.

2.8 Identification of differentially
expressed kinases

We used the BioNavigator software version 6.2 (PamGene
International BV) to normalize the data and to identify
significantly regulated kinases. The BioNavigator software
converts image files to signal intensities and corrects for
local background noise. For the PTK assay, and for a given
phosphopeptide, we fitted time-resolved measurement
cycles to estimate an initial phosphorylation rate (Figure
S3), whereas for STK assay, the signals of the last cyclewere
quantified. We used LIMMA to identify significantly regu-
lated kinases by comparing their activity in tumours versus
NATs.We used the following criteria to define significantly
regulated kinases: FDR-adjusted p-value < 0.05 and a |FC|
≥ 1.5.

2.9 MiRNA–gene regulatory networks

We used the miRNet 2.0 database to search for target
genes of DEMs. The database contains comprehensive
information on experimentally validated miRNA targets
(https://www.mirnet.ca/miRNet/home.xhtml).18 We con-
sidered DEMs of lung tumours to search for putative gene
targets and used the information as input files to search
for database entries inmiRNet 2.0. We compared the list of
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putative target genes with DEGs of LC patients as deter-
mined in our genomic analysis, and this allowed us to
identify validated DEG targets and to construct miRNA–
gene regulatory networks. Subsequently, we visualized
the networks with the software Cytoscape 3.9.1.19 Addi-
tionally, we computed correlations between DEMs and
DEGs. Based on the normality test, we calculated Pearson
and/or Spearman correlations. We compared the results
to the miRNet proposed targets. Furthermore, we per-
formed multiple query types in miRNet by searching for
potential miRNA targets based on patient-specific DEGs
(transcriptomic analysis), and vice versa, used patient-
specific miRNAs as input file to search for potential DEG
targets.

2.10 Survival analysis

For the survival analysis, we included 497 LUAD and 496
LUSC patients with OS information (https://xenabrowser.
net/). The start of the survival analysis was defined
as a definitive diagnosis of LC, the earliest years were
1991 (LUAD) and 1992 (LUSC), and the survival analy-
sis ended in 2015 (LUAD) and 2013 (LUSC). The median
follow-up time was 21.9 (LUAD) and 21.8 (LUSC) months,
and the Interquartile range (IQR) was 23.5 (LUAD) and
31.4 (LUSC) months. We divided the patients into high-
and low-expression individuals according to the median
value of the gene/miRNA expression, and constructed
Kaplan–Meier curves to determine overall survival (OS).
We performed log-rank test and univariate Cox propor-
tional hazards regression analysis to determine statistical
significance and hazard ratio (HR) estimate with 95% con-
fidence interval (CI). To evaluate the proportional hazard
assumption, we computed the Schoenfeld residuals in R
(Supporting Information 1) and assessed linearity of the
Cox proportional hazard regression analysis by calculating
fractional polynomials.

2.11 Search for master regulatory
kinases in canonical pathways of LC
patients

We uploaded DEGs with a |FC| ≥ 3 onto the gen-
eXplain platform, and applied the function ‘find mas-
ter regulators’. The underlying genetic algorithm has
been published20,21 and MRs were identified based on
TRANSPATH R© database entries.We only consideredMRs
with an FDR-adjusted p-value < 0.05 and used default set-
tings of the algorithm, that is, a score of >0.2. The score
defines the connectivity of theMRwith other molecules of
the same pathway, and we used a threshold >1 for the Z-

score which measures specificity of the MR. We adjusted
the algorithm to a maximum radius of 10 molecules
upstream of input DEGs, and the software identified
MRs in different canonical pathways. Next, we searched
for significantly regulated kinases which qualify as MRs
and identified pathways specific to a histological type of
LC (AD, SQ, NET and MT). The kinase/kinome activity
data of lung tumour samples informed on the possibili-
ties to block signalling pathways by targeting hyperactive
kinases. Finally, we constructed regulatory signalling net-
works, which consisted of DEGs, DEMs targeting the
DEGs and kinases.

2.12 Statistics

We used R and the geneXplain (https://genexplain.com/)
software to perform statistical analysis. If not otherwise
specified, all tests were two-tailed, and an FDR-adjusted
p-value< 0.05was considered to be statistically significant.

3 RESULTS

Our investigation conforms to a three-arm study design
and consisted of a genomic, miRNA and kinome profiling
arm. We summarize the patient demographics in Figure 1,
and this includes sex, tumour type, TNM stage, tobacco
smoking history, anatomical location and drug therapies.
The majority are AD cases and the cohort consisted of
slightly more males (59%) than females (41%). Further-
more, 72.6% patients are TNM Stages I–IIIA and based
on self-reporting, the tobacco smoking history is surpris-
ingly similar, that is, 42.1% and 42.1% of current and never
smokers. In regards to tumour location, there are three
major anatomical regions: inferior and superior right and
superior left lobe. Majorly, the patients received adjuvant
drug therapy (mainly clinical stages ≥2) which consisted
of chemo, radio and targeted therapies. About 20% of
patients were treated with ICIs either as standalone or a
combination of chemo and targeted therapy, and 13% of
patients received neoadjuvant therapy primarily consist-
ing of chemo- and radiotherapy. See Tables S1 and S2 for
further information.

3.1 Genomic profiling of different LC
types

To identify disease-regulated genes (DEGs) and miRNAs,
we compared the genomes of tumours to NATs. Shown in
Figure S2 is the principal component analysis (Panel A),
and the heatmaps (Panel B) clearly segregated tumours
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F IGURE 1 Patient demographics. (A) Gender of patients. (B) Distribution of the histological types of lung cancer. (C) Distribution of
TNM stages. (D) Tobacco smoking history. (E) Anatomical location of the tumour. (F) Adjuvant therapeutic interventions.

from NATs across the different histological LC subtypes.
We identified 439, 1240, 383 and 320 significantly upreg-
ulated genes for AD, SQ, NET and MT cases, respectively,
and there are 1092, 1477, 609 and 1267 downregulatedDEGs
(Table S3). Common to all tumours is the predominant
repression of gene expression.
To identify DEGs specifically asscociated with a histo-

logical subtype of LC, we compared the genomes of AD,
SQ, NET and MT cases to NATs. This defined 176, 895, 296
and 141 genes specifically upregulated and 255, 550, 172 and
433 repressed ones in the different LC subtypes as shown
in Figure 2A.
Furthermore, we identified 442, 302, 85 and 88 sig-

nificantly upregulated miRNAs for AD, SQ, NET and
MT cases, and for the same patients, there are 17,
8, 10 and 15 downregulated miRNAs. In addition, we
identified 150, 47, 1 and 1 specifically upregulated and
4, 2, 2 and 3 downregulated miRNAs in AD, SQ,
NET and MT (Figure 2B). Collectively, miRNAs are
primarily upregulated in tumours, whereas transcrip-
tomes are predominantly repressed (Figure 2B and
Table S4).

We used Metascape as an annotation tool for DEGs
which were specifically regulated in the various histo-
logical subtypes of LC, and we compared significantly
enriched terms between them. Note, in this compari-
son we used non-overlapping genes across histological
subtypes. As shown in Figure S4, and with the exception
of mTORC1 signalling, which is common to SQ and MT,
none of the terms overlapped. Therefore, the gene ontolo-
gies and enriched terms are specific for a given histological
subtype of LC.
For AD, and among unique terms associated with

upregulated DEGs, we wish to emphasize KRAS and
EGFR signalling and protein glycosylation. Significantly
enriched terms for SQ are E2F and MYC targets, hypoxia
and oestrogen response and for NET tumours, neuroep-
ithelial cell differentiation and GABAergic signalling.
Finally, enriched terms for MT are MTORC1 signalling,
activation of GTPase activity, chromosome organization
and DNA repair. We also considered enriched terms for
downregulated DEGs. Here, TNFα signalling, response
to cytokine stimulus, actin filament-based process and
immune response, regulation of MAPK cascades and cell
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8 of 25 ZHONG et al.

F IGURE 2 Genome profiling of the various types of lung cancer. (A) Venn diagrams of up- and downregulated genes in AD, SQ, NET
and MT tumours. (B) Venn diagrams of up- and downregulated miRNAs in AD, SQ, NET and MT tumours. (C) Bar plots showing
significantly enriched gene ontology terms and hallmark gene sets of DEGs specifically up- and down regulated in AD, SQ, NET and MT
tumours. AD, adenocarcinoma; MT, metastatic tumours; NET, neuroendocrine tumours; SQ, squamous cell carcinoma.
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ZHONG et al. 9 of 25

adhesion were specific for AD, SQ, NET and MT tumours
(Figure 2C).
To independently validate the results of the present

study (“Hannover cohort”), we retrieved data from the
TCGA database (https://www.cancer.gov/ccg/research/
genome-sequencing/tcga) and applied the following
criteria: DEGs were defined with an FDR-adjusted p-
value < 0.05, a |FC| ≥ 2 in ≥50% of cases. Note, the
TCGA source does only compile LUAD and LUSC cases.
Therefore, we compared 524 LUAD cases to 58 NATs and
separated the data by clinical stages. We searched for com-
mon DEGs between the two cohorts and found > 70% of
the up- and downregulated DEGs as commonly regulated.
The results are similar when compared to the different
histological subtypes of LC (Venn diagram, Figure 3A
and Table S5). Therefore, the data agreed reasonably
well.
Depicted in Figure 3B are the heatmaps for DEGs of the

Hannover cohort, and the colour codes represent Z-scores
which measures the standard deviations from the mean of
a gene expression values. We obtained perfect segregation
of AD and SQ tumours from NATs.
Subsequently, we searched for enriched gene ontologies

with theMetascape software22 and selected the top 100 reg-
ulated genes common between the Hannover and TCGA
cohorts. The FC of the selected genes ranged from 3- to 14-
fold. Additionally, we used hallmark gene sets and KEGG
pathways and show the results in Figure 3C. For upreg-
ulated genes, the hallmark gene sets underscored mTOR
signalling, G2M checkpoint, E2F targets and glycolysis
in LUADs (AD cases). Similarly, KEGG pathway analysis
emphasized cell cycle, p53 signalling, cellular senescence
and cancer pathway.
In regards to downregulated genes (range 5–20-fold),

the hallmark gene sets highlighted apoptosis, inflam-
matory response and TNFα signalling via NFKB. We
obtained similar results for KEGG pathways, and promi-
nent examples of enriched terms were TNFα signalling,
immune and chemokine signalling and leukocyte migra-
tion (Figure 3C).
In the same way, we analysed SQ tumours (LUSC), and

for upregulated DEGs (range 6–194-fold), the hallmark
gene sets were similar to AD cases, that is, mitotic spin-
dle, E2F targets, G2M checkpoints and mTOR signalling,
while KEGG pathway analysis highlighted p53 signalling,
cell cycle and cellular senescence. For repressed DEGs
(range 9–72-fold), the hallmark gene sets emphasized
inflammatory response, KRAS signalling and DNA repair,
whereas KEGG highlighted phagosome, complement and
coagulation cascades and ECM receptor interactions. We
summarize the results in Table S5.
Unlike the cancer transcriptomic data described above,

there was little overlap among DEMs of the Hannover and

TCGA cohort (Figure 3D). In fact, for AD only 6% of up-
and downregulated DEMs are common to both cohorts,
whereas for SQ 5%and 25%DEMsare commonly regulated.

3.2 Gene networks in different
histological subtypes of LC

To gain insight into the molecular wiring across differ-
ent histological subtypes of LC, we constructed regulatory
gene networks, and to ascertain the relationship between
DEMs and DEGs, we analysed data deposited in the miR-
Net database. This revealed experimentally provenmiRNA
gene targets which we compared to DEGs specific for
the different subtypes of LC (Figure 2A). Based on the
paradigm that miRNAs repress the expression of gene tar-
gets, we identified 253, 417, 121 and 332 DEGs specific for
AD, SQ, NET and MT (Figure 4A). Note, all the target
genes were repressed in lung tumour samples (Figure 2A).
Conversely, for repressed DEMs, we discovered 48, 291, 29
and 0 upregulated DEGs. Furthermore, there are 85 targets
in common and therefore were irrespective of the histo-
logical subtype of LC. The gene ontologies emphasized
UV response (DNA repair), hallmark gene set EMT and
TNFα signalling for upregulated DEMs (Figure 4A). For
repressed DEMs, only one target gene is common, that is,
nucleoside diphosphate kinase 1 which we found upregu-
lated in all lung tumour samples, and this kinase supports
metastatic spread.
Additionally, we computed correlations between DEMs

and DEGs. Based on the normality test, we calculated
the Pearson and/or Spearman correlations and summa-
rize the results in Table S6. In regards to AD, we observed
1231 significant correlations. We compared the results to
the miRNet proposed targets and found 846 DEGs (64.2%)
to be in common. For SQ, we computed 1425 significant
correlations, and when compared to the miRNet targets
there are 947 DEGs (50.9%) in common. Together, the cor-
relation analysis identified more potential miRNA-DEG
associations.
Furthermore, we computed multiple query types by

searching for potential miRNAs which target patient spe-
cific DEGs (Hannover cohort data). Additionally, we used
significantly regulated miRNAs of the Hannover cohort
data as input file to search for potential DEG targets. We
compared the results, and for ADs 96% of the targets are
in common based on the multiple query approach, and
similar results were obtained for SQ, that is, 98% (Figure
S5A). We used Metascape gene annotations to construct
regulatory miRNA–gene networks. We selected the top 10
biological processes based on FDR-adjusted p-values and
required the term to cover > 80% of DEGs specific for a
given tumour subtype (Figure 4A). We likewise selected
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10 of 25 ZHONG et al.

F IGURE 3 Independent validation of lung cancer genomics. (A) Venn diagrams of commonly regulated genes in AD and SQ between
the Hannover cohort (test set) and TCGA cohort (validation set). (B) Heatmaps of DEGs of the Hannover cohort. The DEGs of the
non-tumorous adjacent tissue (NATs) are clearly separated from the tumour-associated DEGs, and the colour codes represent Z-scores. (C)
Bar plots of the significantly enriched hallmark gene sets and KEGG pathways for the top 100 DEGs in adenocarcinoma and squamous cell
carcinoma of the Hannover cohort. (D) Venn diagrams of the commonly regulated miRNAs in AD and SQ between the Hannover (test) and
TCGA (validation) cohorts. (E) Heatmaps of the DEMs of the Hannover cohort. The DEMs of the NATs are clearly separated from the tumour
associated DEMs, and the colour codes represent Z-scores. DEGs, differentially expressed genes; DEMs, differentially expressed miRNAs.
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ZHONG et al. 11 of 25

F IGURE 4 MiRNA–gene networks in various histological types of lung cancer (LC). (A) Venn diagrams showing the number of
differentially expressed genes (DEG) across different histological types of LC which are the targets of up- and down regulated differentially
expressed miRNAs (DEMs). (B) Venn diagrams of significantly enriched gene ontology across different histological types of LC which are the
targets of up- and down regulated DEMs. (C) Regulatory miRNA-gene networks of lung adenocarcinomas based on Metascape analysis of
upregulated DEGs which are the targets for repressed DEMs (c1) and downregulated DEGs which are the targets for upregulated DEMs (c2).
(D) Regulatory miRNA–gene networks of lung squamous carcinoma based on Metascape analysis of upregulated DEGs which are the targets
for repressed DEMs (d1) and downregulated DEGs which are the targets of upregulated DEMs (d2). (E) Regulatory miRNA–gene networks of
lung neuroendocrine tumours based on Metascape analysis of upregulated DEGs which are the targets for repressed DEMs (e1) and
downregulated DEGs which are the targets of upregulated DEMs (e2). (F) Regulatory miRNA–gene networks of metastatic lung tumours
based on Metascape analysis of upregulated DEGs which are the targets for repressed DEMs (f).
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12 of 25 ZHONG et al.

the top 10 miRNAs based on the number of target genes
for each biological process and compiled the individual
data in Table S6. In this way, we constructed miRNA–
gene networks specific for AD, SQ, NET and MT LCs. We
compared the terms among the different types of LC, and
the Venn diagram in Figure 4B shows the non-overlapped
terms among the various histological subtypes of LC. We
obtained similar results for repressedDEMs. Here, we con-
sidered terms associated with upregulated DEGs. In fact,
in the comparison of AD versus SQ, there is only one
term in common, that is, peptidyl amino acidmodification.
Together, this demonstrates specificity for the constructed
miRNA–gene networks.
Shown in Figure 4C–F are the regulatory miRNA–gene

networks for the different histological types of LC, and
we used Cytoscape to create the network. Although the
terms are generic in nature, the underlying DEGs are
highly specific and encompass potential drug targets. For
instance, for the SQ network (Figure 4D1), the Metascape
analysis revealed cell cycle phase transition as a statisti-
cally significant enriched term and embedded in this term
are highly regulated DEGs, notably CDK1, CHEK1 and
GSK3B which were induced by eight-, four- and twofold,
respectively, in expression. Strikingly, the activities of the
coded kinaseswere also significantly increased in the same
patient derived tumour biopsies (see below). A further
example relates to peptidyl-amino acid modification, and
among genes embedded in this term is the fivefold upregu-
lated NTRK2. Importantly, the kinase activity of NTRK2 is
also significantly increased, and its inhibitors entrectinib
and larotrecitinib are already approved for the treatment
of solid tumours in patients diagnosed with NTRK2 fusion
proteins.
Together, the miRNA–gene networks bear great rele-

vance for an identification of potential drug targets.

3.2.1 Kinome profiling in LC

We used the PamGene R© platform to identify aberrant
kinase activities in tumours and NATs of 54 patients. The
assay measures the phosphorylation of peptides, and each
peptide contains canonical amino acid sequences which
are recognized by distinct serine/threonine and tyrosine
kinases. We obtained two sets of data. First, direct mea-
surement of the phosphorylation of kinases, and second,
an identification of regulated kinase based on the phos-
phorylation of canonical amino acid sequences. Here, the
upstream kinase phosphorylates a specific substrate, and
therefore, the phosphopeptide is a read-out of the kinase
activity. Depicted in Figure 5A is a Venn diagram of phos-
phorylated peptides across the different histological types
of LC. We measured an increased phosphorylation of 156

peptides with 95 being common between the different
types of LC (Figure 5A). Conversely, there are 28, 1, 2 and 1
phosphorylated peptides uniquely associated with AD, SQ,
NET andMT tumours. Of the 156 phosphorylated peptides,
there are 72 which allow direct measurement of regulated
kinases. Note, for some kinases, such as the EGFR, we
measured the phosphorylation of several peptides which
contain specific tyrosine residues, and in Figure 5B we
show significantly regulated kinases between the different
types of LC. Together, we identified 53 significantly regu-
lated kinases ofwhich 46 are common (Figure 5B andTable
S7). We did not observe repressed kinase activities but
upregulation of primarily PTKs, that is, 67% (Figure 5C),
and identified 35 serine/threonine kinases specifically reg-
ulated in AD (Figure 5D), and these kinases phosphorylate
28 peptides (Figure 5A). Moreover, upstream kinase analy-
sis revealed 71 kinases regulated in common (Figures 5D
and S6a–d) of which 67.6% are tyrosine kinases, and in
Figure S4 we show examples of kinetic plots for tumour
and NAT biopsies. Converging the results of Figure 5B
(direct measurement of 53 phosphorylated kinases) and
upstream kinase analysis of phosphorylated peptides (see
Figure 5D) yielded a total of 137 distinct kinaseswhichwere
significantly upregulated in LC (Figure S6e).
The heatmap shown in Figure 5E informs on tumour

regulated kinases, and the data are log2 fold increases
across different histological subtypes of LC. In Table S7, we
specify the amino acid sequence of the target proteinwhich
becomes phosphorylated, and amore detailed information
is given in Supporting Information 2.
Next, we addressed the questions whether the genes

coding for the kinases were also regulated at the gene
expression level and show the results in Figure 5F. There
are 4 (PTK6, CDK1, AURKA and EPHB2) and 10 kinases
(PAK1, PKMYT1, AURKB, CHEK1, CDK1, JAK3, EPHB2,
PRKCG, PTK6 and AURKA) of the Hannover-AD and
TCGA cohort whose gene expression and kinase activi-
ties were upregulated in the same way. Similarly, there are
eight (CDK1, CHEK1, EPHA4, GSK3B, MAP2K6, NTRK2,
PAK1 and PTK2) and five kinases (CDK1, CHEK1, EPHB2,
PAK1 and PKMYT1) in common between the two cohorts
(Figure 5F). For neuroendocrine LC tumours, RET is the
only kinase where the gene expression (11-fold) and kinase
activity (5-fold) were increased in the same way. Together,
the data imply that only a few kinases are simultaneously
regulated at the gene expression and kinase activity level.
Therefore, kinase profiling is of critical importance.
Additionally, we determined the prognostic value and

computed univariate Cox regression proportional hazard
models for genes that code for 110 significantly regulated
kinases based on upstream analysis (Figure 5D and Table
S9). We identified 37 kinase coding genes in AD with a
statistically significant HR. However, only 18 kinase cod-
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ZHONG et al. 13 of 25

F IGURE 5 Kinome profiling of lung cancer. (A) Venn diagram showing the distribution of phosphorylated peptides across adeno,
squamous, neuroendocrine and metastatic lung tumours. (B) Venn diagram of significantly regulated kinases whose activity was directly
measured. (C) Pie chart of commonly regulated PTKs and STKs between the various histological types of lung cancer. (D) Venn diagram of
regulated kinases based on upstream analysis across the various histological types of lung cancer. (E) Kinase activities across different
histological types of LC. The data are log2 fold changes, and the blue quadrants show FDA-approved kinase inhibitors for a given kinase. (F)
Venn diagrams of DEGs coding for regulated kinases across the various types of LC. (G) Kaplan–Meier survival plots of DEGs coding for
significantly regulated kinases. The kinase activities were determined in the Hannover cohort, and the DEGs stem from the Hannover test set
and the TCGA-LUAD validation set. (H) Regulatory miRNA-gene networks for DEGs coding for significantly regulated kinases. Red colour:
upregulation. Blue colour: downregulation. DEGs, differentially expressed genes; FDA, Food and Drug Administration; LC, lung cancer;
PTKs, protein tyrosine kinases; STKs, serine/threonine kinases.
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14 of 25 ZHONG et al.

ing genes had a HR > 1 (range 1.1–1.79). For SQ, there are
three kinase coding genes with a statistically increased HR
(range 1.2–1.37) (Table S9). Together, the prognostic value
of the univariate Cox regression proportional hazard mod-
els based on the expression of the kinase coding genes is
less obvious.
Notwithstanding, we were able to compute meaning-

ful Kaplan–Meier survival curves for kinases where the
change in gene expression and kinase activity agreed, and
depicted in Figure 5G are the plots for the kinases AURKA,
AURKB, CDK1, CHEK1, EPHB2 and PKMYT1. Here, the
prognostic value for these kinases could be established,
and in the case of CDK1, clinical Phase II trials in NSCLC
and SCLC are ongoing (NCT05651269 and NCT02161419).
Furthermore, for the different histological subtypes of

LC, we constructed networks that describe the relation-
ship between miRNAs, their gene targets and the activity
of the kinase protein (Figure 5H). As an example, the
expression of the genes coding for PDGFRA, KDR and
NTRK2 kinase are downregulated, and themiRNAs target-
ing these kinases are upregulated. Although this fits the
paradigm, that is, miRNAs repress gene translation, we
assayed increased kinase activity, and this implies indepen-
dent mechanisms for their regulation. We also identified
upregulated miRNAs linked to an increased expression of
kinase coding genes, as denoted for CDK1, ARUKA and
PTK6, and their kinase activity was likewise induced. The
results reinforce the notion that expression of the kinase
coding gene and the activity of the coded protein cannot
be correlated easily. However, the networks are of criti-
cal importance to define therapeutic targets as described
below (see master regulatory networks).
Apart from miRNet searches, and given that the

miRNA–DEG correlation analysis identified more poten-
tial targets (see above and Table S6), we searched for new
kinases based on the correlation analysis. By applying a
threshold of R2 ≥ 0.7, we used the results of the correlation
analysis to identify DEGs coding for kinases and compared
the results with their actual enzyme activity, as determined
by kinome profiling of tumour samples from LC patients.
As shown in Figure S5B, none of the correlation anal-
ysis revealed additional DEGs coding for kinases whose
enzyme activity was likewise upregulated in tumour sam-
ples ofADpatients.However, for SQpatients, we identified
six kinases of which five were also flagged as potential tar-
gets based on the miRNet query (Figure 5H). Together, the
DEM–DEG correlation analysis identified the FGR kinase
as an additional potential drug target for SQ (Figure S5b).

3.2.2 Commonly regulated kinases in LC

Depicted in Figure 6A are the complex signalling networks
in LC, and we separate the signalling networks in tumour

and immune cells. Based on the paradigm that ≥70% of
patients show the same change, that is, induced kinase
activity, we identified 45 and 47 significantly regulated
kinases in AD and squamous LC cases of which 34 are reg-
ulated in common (Figure 6B, Venn diagram). We did not
observe repressed kinase activities. In the same way, we
analysed the neuroendocrine and metastatic tumours and
identified 74 and 27 kinases as significantly upregulated.
Additionally and irrespective of the histologic subtype
of LC, we identified 17 tyrosine and 4 serine-threonine
kinases as commonly upregulated across 54 LC patients
(Figure 6C).
As shown in Figure 6A, RAS is not regulated in

the present study (grey coloured), while the rectangular
marked proteins are based on upstream kinase analysis.
Proteinsmarked by the symbol ℗ are direct measurements
of phosphorylated kinases. Additionally, we identified reg-
ulated kinases by upstream analysis. Here, the phospho-
rylation of canonical peptides was assayed. An important
finding of our study is an upregulation of a wide range
of receptor tyrosine kinases in tumours such as the vas-
cular endothelial growth factor receptor 2 (VEGF2/KDR),
EGFR and ERBB2, ephrin type-A&B receptor (EPHA &
EPHB2), platelet-derived growth factor receptor, the RET
and the MER, MET and RON proto-oncogenes. Addi-
tionally, we assayed peptides typically phosphorylated
by the AXL (Tyro3-Axl-Mer (TAM) receptor) tyrosine
kinase, the insulin (InSR) and insulin-like growth fac-
tor 1 receptor (IGF1R), the ALK, neurotrophic TK, the
kit proto-oncogene and the fibroblast growth factor, and
we obtained clear evidence for their increased activity in
tumours of LC patients (range in AD 2–4-fold, in SQ 2–24-
fold). Moreover, for some of the receptor tyrosine kinases,
we determined the phosphorylation sites and show the
downstream signalling of kinases which were regulated
as well. For instance, we assayed the phosphorylation of
three peptides of the EGFR: the amino acid sequence (AS)
1103–1115 (GSVQNPYHNQPL), the AS 1165–1177 (ISLD-
NPDYQQDFF) and AS 1190–1202 (STAENAEYLRVAP)
and observed differences between the various histological
subtypes of LC. The differences in the tyrosine phos-
phorylation can be explained due to variant SRC and
ABL1 kinase activity with implications for downstream
signalling events. Similarly, we assayed the tyrosine phos-
phorylation of the MAPK1 peptide HTGFLTEYVATRW
(AS 180–192) which was significantly increased in SQ cases
only (range 1.2–3.7-fold). This peptide can be phosphory-
lated by the kinases RAF1, RET, JAK2, ERK1 and LYN,
and all of them are upregulated in the Hannover cohort of
LCpatients. Likewise,we observed increased phosphoryla-
tion of the tyrosine residue 185 of the p38gamma/MAPK12
peptide ADSEMTGYVVTRW, and one study reported the
precisely ordered phosphorylation reactions of the p38
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ZHONG et al. 15 of 25

F IGURE 6 Identification of signalling networks in lung cancer. (A) Depicted are the signalling networks based on 92 commonly
regulated kinases across different histological types of lung cancer. Kinases marked with ℗ represent direct phosphorylation of the protein.
Rectangular shaped kinases are based on upstream kinase analysis. Grey coloured kinases were not measured. (B) Dot plots of significantly
regulated kinases between lung adenocarcinoma and squamous cell carcinoma. The data are fold changes, and statistical testing is based on a
two-sided t test when the data are normally distributed; otherwise, we used the two-sided Mann–Whitney U test. Error bars represent 95%
confidence intervals. (C) Dot plots of significantly regulated kinases in lung adenocarcinoma patients with KRAS or without KRAS mutation.
The data are fold changes, and statistical testing is based on a two-sided t test when the data are normally distributed; otherwise, we used the
two-sided Mann–Whitney U test. Error bars represent 95% confidence intervals.
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mitogen-activated protein (MAP) kinase which involves
the kinases MKK3/6, MEKK6, SEK1 and ASK.23

3.2.3 Tumour cell infiltrating lymphocytes

A major finding of our study is the unique regulation of
kinases among tumour infiltrating lymphocytes. Impor-
tantly, these kinases were regulated in all tumours irre-
spective of the histological subtype. In regards to the T-cell
receptor (TCR), the datawere complex. In general, theTCR
αß and γδ heterodimers engage with CD3 molecules,24
and the tyrosine residues of the CD247/CD3ζ chain are
of critical importance in activating TCR. We observed
10-fold induced phosphorylation of the immunorecep-
tor tyrosine-based activation motif (ITAM) KDKMAEAY-
SEIGMof CD247/CD3ζ. The phosphorylation of this ITAM
is catalysed by the ZAP70 kinase, and we found its
activity increased by three- to fourfold in LC. More-
over, the lymphocyte cell-specific protein tyrosine kinase
LCK phosphorylates the ZAP70 protein (ζ chain of TCR-
associated protein kinase 70), and we measured a fourfold
increased LCK activity in tumour biopsies of LC patients.
Additionally, the CD3ε polypeptide PVPNPDYEPIRKG is
phosphorylated by LCK, and phosphorylation of this pep-
tide was increased by fourfold. Together, we observed
increased phosphorylation of the CD3ε and CD3ζ chains
and measured increased activity of kinases catalysing the
phosphorylation of these peptide chains. Obviously, this
will support assembly of the TCR–CD3 complex.
The signalling roles of CD3ε were recently discovered

and through a series of mechanistic studies, CSK and
the protein tyrosine phosphatases SHP1 and SHP2 were
shown to inhibit TCR signalling.25 We assayed the CD3ε-
specific peptides PVPNPDYEPIRKG at AS 182–194 and
KGQRDLYSGLNQR at AS 193–205 and determined only
for the first ITAM (AS 182–194) a fourfold increased
phosphorylation. Furthermore, the phosphatases SHP1
and SHP2 are activated by tyrosine phosphorylation.26
We assayed the phosphorylation of the SHP1 at AS 558–
570 KHKEDVYENLHTK and for SHP2 at AS 580–590
SARVYENVGLM, and for both peptides, we observed up
to fourfold increased tyrosine phosphorylation. Moreover,
the SHP1 peptide is phosphorylated by LCK, and its activ-
ity was upregulated by fourfold (Table S7). Furthermore,
SHP2 regulates SRC family kinase activity and RAS/ERK
activation by controlling CSK recruitment.27
Concerning the B-cell receptor, the only peptide avail-

able on the PamGene platform is the ITAM of the Igα
chain. Its tyrosine-specific phosphorylation at AS 181–193
EYEDENLYEGLNL is catalysed by SYK, and this kinase
is activated by LYN. We determined a four- and five-
fold increased activities of the LYN and SYK kinases and

observed an up to fourfold increased ITAM phosphory-
lation of the Igα chain in neuroendocrine LC cases. The
data imply activation of the pro to the pre-B-cell stage
but is confounded by the limited information available.
Furthermore, BCR induces phosphorylation of PLC-γ2 on
tyrosine Y1217 which contributes to an activation of this
phospholipase.28
A further example relates to the TEC tyrosine kinase

which exerts multiple functions on the immune system
and T-cell signalling.29 We assayed the peptide RYFLD-
DQYTSSSG at AS 512–524 and found its activity increased
by fourfold.
Collectively, while some essential components of the

TCR complex were activated, inhibitors of TCR signalling
were likewise upregulated, and the results are suggestive
for a dysfunctional TCR. Interestingly, none of the gene
coding for the TCR complex was significantly regulated
in LC patients (Table S3), thus emphasizing the need to
perform phosphopeptide analysis.
Apart from the complex TCR signalling in the tumour

microenvironment, we wish to emphasize activation of the
PI3K/AKT pathway which is mediated through a range of
kinases in response to insulin receptor and insulin recep-
tor substrate signalling (Figure 6A). In LC, both kinases
were upregulated four- to fivefold, and its aberrant reg-
ulation is frequently observed in cancers.30 Within this
pathway, GSK3B is also threefold upregulated. A further
example relates to an activation of theMAPKpathway, and
in LC tumour biopsies, we measured an average fivefold
increased phosphorylation of the peptide PRGQRDSSYY-
WEI at AS 332–344 of the RAF1 protein. Similarly, the
activity of the ERK1 and ERK5 kinases increased by five-
fold as evidenced by the phosphorylation of the ERK1
peptide GFLTEYVATR at AS 199–208 and the ERK5 pep-
tide AEHQYFMTEYVAT at AS 212–224. Moreover, we
observed an extraordinary induced activity of the CRK
and EFS kinases, that is, 25- and 7-fold, respectively. Upon
MAPK activation RAF phosphorylates MEK which in
turn phosphorylates ERK. Notwithstanding, an alternative
route of ERK phosphorylation involves the CRK phospho-
rylation of the EFS kinase which in turn phosphorylates
Src and eventually ERK.31 Interestingly, CRK selectively
regulates T cell migration.32

3.3 Different kinomes in lung AD
and SQ

Unlike adenocarcinomas, targeted therapy in SQ is still in
its infancy.33 We compared the kinase activities between
different histological subtypes of LC and shown in
Figure 6D is the fold change difference of significantly reg-
ulated kinases betweenADandSQ.Wemeasured the activ-
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ity of kinases in tumour tissue relative to NATs and com-
pared the results between AD and SQ patients. Remark-
ably, of the 46 commonly regulated kinases (Figure 5B),
the activities of 17 kinases are higher in SQ, and for some
patients, we observed unprecedented high activities as
denoted for the FGFR1, PGFRB; ANXA2, CD3ζ, GAB2,
LYN and MAPK12. It was not unexpected to see higher
FGFR1 activities given its common alterations in SQ. How-
ever,we also observed up to 10-fold induced activities of the
phosphoinositide-3-kinase regulatory subunit 1 and there-
fore demonstrate high activity of the phosphatidylinositol
3-kinase subunit. Together, the data underscore the great
opportunities for targeted therapies in LC, andwe obtained
strong evidence for a broad range of kinases which are also
potential targets for the treatment of SQ.
Additionally, we compared kinase activities of patients

diagnosed with driver mutations in EGFR, KRAS, p53,
BRAF andMYC (Table S2) to patientswithout drivermuta-
tions and compile the results in Table S10. Essentially, we
did not observe significant differences in kinase activities
between carriers of KRAS mutations and KRAS wild type.
For instance, we compared the kinase profile of > 3-fold
significantly regulated kinases of five AD patients with
the KRAS mutations G13D, G12A, G12C, G12V and KRAS
amplifications to nine AD patients without driver muta-
tions and did not observe significant differences between
the two cohorts (Figure 6E). The data broaden the perspec-
tive of KI-based therapies in patients without oncogenic
driver mutations.
Finally, we identified kinases which were specifically

regulated in AD, and shown in Figure S7 are the signalling
networks for 28 peptides. The peptides are phospho-
rylated by 35 different serine/threonine kinases (Table
S7) and with the exception of PI3K, GSK3B, RAF and
ERK, the kinases were defined by upstream analysis,
that is, kinases known to phosphorylate these peptides
(Figure 5D). Our findings underscore the therapeutic
opportunities in blocking tumour associated signalling
networks.

3.4 Identification of molecular hub
proteins to block tumour-specific
signalling networks

We define hub proteins as master regulatory molecules
which are at the apex of signalling cascades, and their inhi-
bition results in disintegration, fragmentation and abro-
gation of signalling networks. By combining the kinome
and genomic data, and based on computational analysis,
we searched forMRs in LC-associated signalling networks.
Based on the knowledge of TRANSPATH, we obtained
information on signalling molecules in different pathways

and downstream reactions. We identified several kinases
as MRs, and in Figure 7 we show the results for the dif-
ferent histological types of LC. Although the number of
MRs differed between AD and SQ, that is, 7 vs 3, we
did not identify specific MRs for these tumour entities.
Conversely, for NET and MT, there are four (NTRK2,
RET, SYK and MAPK14) and three MRs (EGFR, MAPK3
and LYN), respectively, which were specific for these his-
tological types of LC (Figure S8). The networks shown
in Figure 7 depict significantly regulated MRs, which
function as kinases. Moreover, depicted are significantly
downstream regulated kinases, in addition to DEGs coding
for signalling molecules in the networks. Finally, miRNAs
control the expression of DEGs, and for a given net-
work, we visualize the hierarchy of signalling molecules
(Figures S9–S12). The MRs function primarily as recep-
tor tyrosine kinases,MAPKs and cyclin-dependent kinases
to influence cell proliferation, cytoskeletal dynamics and
TCR/immune cell responses.

3.5 Validation of tumour-regulated
kinases in human LC cell lines by siRNA
and CRISPER knock out and cell viability
assays

We used two different publicly available data sets to val-
idate kinases as potential therapeutic targets. First, we
considered the findings of Campbell and colleagues who
performed large-scale profiling of kinase dependencies in
cancer cell lines.34 Wedefined aZ-score of≥−1.5 as thresh-
old for significance, and only considered kinases that were
significantly upregulated in > 70% of tumour samples.
Among the 21 commonly upregulated kinases shown in
Figure 6C, and following gene knock-down of CDK4, FER,
FES and JAK1&2, we were able to confirm loss of cell via-
bility in 9 out of the 12 human LC cell lines. In regards to
11 kinases specifically regulated in AD (Figure 6B), siRNA-
mediated gene-silencing of CDK1, EPHA1, JAK3, RET and
ZAP70 caused loss of cell viability in a panel of six human
adenocarcinoma cell lines (Table S11). Moreover, siRNA-
mediated gene silencing of the kinase ephrin receptor
EPHA1 caused cell death in the large-cell lung carcinoma
cell line BEN.Concerning SQ, gene silencing of FGFR2 and
PDPK1 led to significant reductions in cell viability of the
human LC cell lines H460, H23 and A427. Finally, we con-
firmed significantly reduced cell viability in the carcinoid
cell line H727 following siRNA of tyrosine kinase 2 which
is specifically upregulated in carcinoid NET (Table S11).
To independently validate the relevance of regu-

lated kinases as therapeutic targets, we interrogated
the DepMap database (https://depmap.org/portal/) and
retrieved kinase inhibition data for 50 human lung AD
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F IGURE 7 Master regulatory signalling networks in different histological types of lung adenocarcinoma. Depicted are networks of
significantly upregulated kinases which function as master regulator (MR) and downstream kinase in canonical pathways. The MR augments
expression of differentially expressed genes (DEGs) we found upregulated in tumours of lung cancer (LC) patients. The DEGs are targets of
miRNAs which are downregulated in tumours of LC patients. Yellow coloured kinases are also upregulated at the DEG level.

and 19 squamous carcinoma cell lines. We evaluated the
impact of gene knock down on cell viability, and compared
kinases significantly regulated in patient tumour samples
with kinase inhibition data deposited in DepMap.35 Given
that we compared results from different studies and
experimental settings, we used −0.5 as threshold for effect
size. The results are summarized in Table S11, and for
each cell line, we specify the Z-scores and/or effect size.
Together, we confirmed 62 and 27 kinases, respectively as
potential therapeutic targets in 33 human lung AD and 15
squamous carcinoma cell lines (Table S11). Therefore, by
utilizing the DepMap data, we were able to validate nearly
half of the kinases as potential therapeutic targets.

3.6 Translating multi-omics data into
individualized therapeutic concepts in
distinct LC subtypes

Based on the seminal works of Hanahan and Weinberg,
sustained proliferative signalling is one of the hallmark

traits in cancers. In order to define kinases at the apex of
signalling networks, we used kinome and genomic data
and searched for master regulatory molecules as detailed
in the Methods section. Depicted in Figure 7 are the MR
regulatory networks. We show significantly regulated MR
and downstream kinases and their associated gene net-
works all of whichwere highly regulated.We hypothesized
that inhibition of MR kinases will lead to disintegration of
an entire signalling trait and propose their combined inhi-
bition with downstream kinases to be even more effective.
Consequently, the gene silencing and/or drug-dependent
inhibition of the MR kinases AKT1, CDK1&2, ERBB2 and
the downstream kinase EGFR markedly reduced cell via-
bility in a large panel of human adenocarcinoma cell
lines (Table S11). Similarly, gene silencing and/or drug-
dependent inhibition of CDK1&2 and the downstream
kinases EGFR and MAPK1 in SQ led to marked reduc-
tions in cell viability. Noteworthy, and with the exception
of AKT1 and ERBB2, estimates for the mean effect size
differences ranged between −3 and −1.8. Clearly, this
underscores the large effect of MR kinase inhibition on
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cell viability in LUAD cell lines. In regards to SQ and
with the exception of MAPK1, the mean effect size dif-
ferences ranged between −3.3 and −1.9. Altogether, this
demonstrates the potency of MR kinase inhibition on cell
viability.
By harnessing the kinase profiling data, we were able

to propose new targets and/or combinations of kinase
inhibitors for the treatment of LC. Specifically, of the 62
kinases upregulated in AD, and based on cell viability
data following drug inhibition or gene silencing, we were
able to validate 48 kinases as potential therapeutic targets
across a panel of human LUAD cell lines (Table S11). We
also validated 21 kinases across a panel of human lung SQ
cell lines whose inhibition or gene knockdown halted or
diminished cell proliferation. While some of the kinase
inhibitors are already exploited for LC therapy, that is,
four in AD (MET, EGFR, NTRK1 and RET) and four in
SQ (EGFR, MAP2K2, RET and BRAF), there are another
seven kinase targets (SRC, JAK1, TYK2, FGFR1/2, CDK6
and PDGFRA) which are used for other indications such
as clear cell renal cell carcinoma, osteosarcoma, acute
myeloid leukaemia, urothelial bladder cancer, bile duct
and breast cancer (Table S8). We propose repurposing of
these drugs and consider them as worthwhile candidates
for clinical trials in LC.
Of the 62 kinases regulated in AD, there are 29 for which

no approved drug is available. Similarly, for SQ, we iden-
tified three new kinases as potential therapeutic targets
(Figure 8A, and Table S11). Given their significant upreg-
ulation in LC, there is good evidence for these kinases to
be bona fide therapeutic targets. Some of the kinases func-
tion in cell cycle (AURKA, AURKB) or Ca2+/calmodulin
dependent, mitogen-activated protein kinases/ribosomal
proteins, AKT/mTOR and various protein kinase sig-
nalling pathways as well as ephrin. Additionally, we
propose PDFGRB, MAPK3 and the serine-protein kinase
Sgk1 for clinical evaluation in SQ. We also identified 10
kinases regulated in common in AD and SQ (Figure 8A).
Based on the MR networks described above (Figure 7),

we hypothesized that the simultaneously use of MR and
downstream kinase inhibitors will improve potency and
therefore searched for LC patients with common upregu-
lation of these therapeutic targets. The results are shown
in Figure 8B, and in the case of AD, we propose the
combined use of CDK1 and EGFR, CDK2 and EGFR and
AKT1 and EGFR. In the case of SQ, we propose CDK1 and
EGFR as well as CDK1 and MAPK1. Recently, the impor-
tance of CDK1 inhibition in cancer therapy was the subject
of a review,36 and overexpression of EGFR is common
in LC.
Apart from targeting kinases which function as MR at

the apex of signalling networks,we searched for commonly
regulated kinases in LC. Here, we followed the idea of

dual kinase inhibition with the kinases functioning in dif-
ferent pathways. We set a threshold of ≥50% of patients
showing upregulation of two kinases in the same tumour
sample. This defined 10 kinase doublets as potential ther-
apeutic targets (Figure 8C). Once again, the new kinase
targets have been validated based on cell viability assays
(Table S11) and are suitable candidates for in-depth evalu-
ation. In the same way, we considered kinase doublets in
SQ. Outstandingly, there are 15 kinase doublets regulated
in common in AD and SQ (Figure 8C).

4 DISCUSSION

Through comprehensive transcriptome, miRNA and
kinome profiling, we examined regulatory networks
in tumours of LC patients and identified 137 distinct
kinases which were significantly upregulated in tumour
resection material. An important finding of our study
is the significant upregulation of serine/threonine
kinases which are rarely exploited as drug targets in
LC. Indeed, 52% of the 137 upregulated kinases are
STKs. Notwithstanding, among the commonly regulated
kinases (Figure 5B,D), 67% are tyrosine kinases. Based
on a 2023 published update on FDA-approved kinase
inhibitors11 and information retrieved from the Uni-
versity of Dundee MRC protein phosphorylation unit
(https://www.ppu.mrc.ac.uk/sites/default/files/2023-
01/small-molecule-inhibitors-03-01-17.pdf), there are 83
kinase inhibitors targeting 24 kinases all of which were
upregulated in LC (Figure 5E, blue coloured quadrants,
Table S8). Moreover, of the 83 inhibitors, 20 are already
in use for the treatment of LC in patients with ALK,
BRAF, EGFR, ERBB2, MEK, MET, NTRK2 and RET
alterations.11,40
About 20 years ago, the landmark study of gefitinib

over carboplatin-paclitaxel revolutionized the treatment
of NSCLC patients, and the IPASS study demonstrated
that patients with EGFR driver mutations benefitted most
from this tyrosine kinase inhibitor (TKI)–based therapy.37
Meanwhile, targeted therapies in LC patients with driver
mutations have become the mainstay in therapy.38,11 Yet,
the selection of LC patients for a given treatment with
KIs is limited to those with known driver mutations,
that is, ALK, BRAF, EGFR, ERBB2, KRAS, MET, NTRK,
ROS and RET alterations.39 Therefore, only a small set of
patients benefit from KIs, and less than 10% of LC patients
are considered to be eligible for KI-based therapies.9
For example, targeting KRAS in LC patients carrying
the KRAS G12C mutation was the subject of a recent
review,40 and the drug sotorasib received approval in
2021 for the treatment of NSCLC. In fact, about 30%
of LC patients with driver mutation are KRAS positive.
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F IGURE 8 Summary of proposed targets for kinase inhibitor (KI)–based therapies in lung cancer (LC) patients. Depicted is the
frequency of regulated kinases in LC patients. (A) The histogram shows the frequency of patients with kinases specifically regulated in
adenocarcinoma (AD) or squamous cell carcinoma (SQ) in addition to commonly regulated in both subtypes of LC. (B) The histogram shows
the frequency of patients with concurrent regulation of master regulator (MR) and downstream kinases in the same tumour sample of AD
and SQ cases. We propose dual kinase inhibition to improve potency of drug treatment. (C) The histogram shows the frequency of patients
with concordant regulation of kinase doublets in the same tumour sample of AD and SQ cases. Additionally, we show kinase doublets which
are regulated in common in AD and SQ, and therefore these targets are independent of the LC subtypes.
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Likewise, the third-generation EGFR inhibitor osimer-
tinib received approval for first-line treatment in 2018,
and this TKI is also effective in patients with the geno-
types L858R/T790M/C797S.41 Gene mutations in HER2
are rare (1%–4% of NSCLC) and non-selective TKIs are of
little benefit inHER2mutant LC patients.42 Notwithstand-
ing, antibody-drug conjugates consisting of trastuzumab-
emtansine and trastuzumab-deruxtecan yielded impres-
sive results regarding progression-free survival and OS.42
Similarly, gene mutations in BRAF are rare among

NSCLC patients (about 4%), and the importance of BRAF
inhibitors in NSCLC was the subject of a recent review.43
In 2022, the combination of dabrafenib and trametinib
for unresectable or metastatic solid tumours with BRAF
V600Emutation received accelerated FDA approval. How-
ever, this combinationwas already approved formetastatic
NSCLC in 2017. Very recently, the FDA approved the com-
bination of encorafenibwith binimetinib for BRAFmutant
metastatic NSCLC.
A further example relates to the third-generation

inhibitor lorlatinib, whichwas approved for first-line treat-
ment of ALK positive NSCLC patients in 2021. Although
infrequent, ALK gene fusions aremore common inNSCLC
when compared to gene mutations and gene amplifica-
tions. Finally, the results of the Geometry Mono-1 study
(NCT02414139) in exon 14 skipping and MET amplified
NSCLC patients was published in 2020,44 and the impres-
sive capmatinib antitumour activity led to its approval in
2022.
Collectively, the benefit of kinase inhibitors in LC are

unquestionable but until now such therapies are narrowly
focused on patients with driver mutations. Given that 21
kinases are regulated in LC irrespective of the histologi-
cal subtypes, we propose a much broader use of kinase
inhibitors (Figure 6C). In addition, we broaden the per-
spective of STK-based treatment algorithms in LC and
identified 35 STKs specifically regulated in AD (Figure 5D)
of which CREB1 is a prominent example.
Furthermore, the results of combined immune

checkpoint and kinase inhibitor therapy was recently
summarized,45 and a triple therapy consisting of ate-
zolizumab, the BRAF inhibitor vemurafenib and the MEK
inhibitor cobimetinib was approved as first-line treatment
in BRAFV600 melanoma patients. It therefore can be
regarded as a proof-of-concept study. Notwithstanding,
the combination of ICIs with TKIs in LC patients with
EGFR mutations is disappointing and is associated with
significant toxicities especially in the combination pem-
brolizumab with gefitinib.46 Although the combination of
pembrolizumab with erlotinib is feasible, it is not superior
to erlotinib monotherapy as observed in the Clinical-
Trials.gov ID NCT02039674; A Study of Pembrolizumab
(MK-3475) in Combination With Chemotherapy or

Immunotherapy in Participants With Non-small Cell
Lung Cancer (MK-3475-021/KEYNOTE-021) sponsored
by Merck Sharp & Dohme LLC. Obviously, new studies
are needed to evaluate efficacy and safety of combination
therapies (Table 1).
Based on the concept of MR networks, we used multi-

omics data to define master regulatory networks with
kinases functioning at the apex of signalling networks. We
propose their inhibition as a novel therapeutic concept and
identified combinations whereby theMR and downstream
kinases are concomitantly inhibited as shown in Figure 8B.
Moreover, we identified 10 kinase doublets as potential
therapeutic targets and propose their inhibition to bemore
potent than single kinase inhibition.
While the use of TKIs in LC treatment reduced signifi-

cantly cancer-related mortality, the risk of adverse cardiac
and cerebrovascular events is significant, as reported for a
large cohort of > 24 000 patients on TKI treatment which
was compared to an equal large cohort of> 24 000 patients
not receiving TKIs.47 Apart from cardiovascular adverse
effects, that is, hypertension, atrial fibrillation, impaired
cardiac function and even heart failure, commonADRs for
gefitinib include skin toxicity and diarrhoea as well as nau-
sea, interstitial lung disease, dry skin, pruritus, stomatitis
and anorexia. In a recent review, the spectrum of adverse
effects of TKI-based cancer therapy was summarized, and
as denoted by the authors, the potential mechanisms are
mostly unclear thus leaving a critical knowledge gap.48
Furthermore, most, if not all patients on targeted

therapies develop drug resistance which render TKI
ineffective,49 and possible reasons are modifications of
the oncogenic driver itself, changes in the drug target
expression, activation of parallel and alternate signalling
pathways, activation of downstream signalling and histo-
logical changes such as epithelial-to-mesenchymal transi-
tion. The various concepts for drug resistance to TKI based
therapies have been summarized.49,50
Together, the combined use of kinome and genomic data

enabled us to construct regulatory networks. TargetingMR
hub proteins and downstream kinases is a novel approach
and permits the development of a personalized therapeutic
concept based on aberrant signalling networks which are
independent of drivermutations. Potentially, new concepts
for overcoming drug resistance emerge through combined
inhibition of MR- and downstream kinases. In Figure 9A,
we show the current and evolving concepts in TKI-based
therapies, and we highlight the classical and evolving
approach that combines genetic, genomic and kinome
data.
Although we identified the remarkable regulation

of > 40 kinases in the majority of patients (Figure S6f),
the following caveats and critical questions need to be
considered:
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F IGURE 9 The landscape of kinase targets in lung cancer (LC) and immune cells. (A) Depicted is the current and evolving paradigm of
tyrosine kinase inhibitor (TKI)-based therapies, and the critical questions that need to be considered. (B) Overview of drugs targeting kinases
in lung cancer and other solid tumours. (C) Histogram of the number of blood borne miRNAs that have the potential to serve as biomarker for
safety and efficacy of kinase-based therapies and examples of specifically regulated miRNAs in adenocarcinoma (AD), squamous cell
carcinoma (SQ) and metastatic tumours (MT) that respond to CDK1, CDK4 and KIT inhibitors.
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1. Are only patients with advanced LC tumours, that
is, unresectable Stage III, eligible for the proposed
treatment algorithm?

2. The difficulties to select drugs and doses for personal-
ized treatments based on the kinome profile that have
no approval for LC but other tumour indications.

3. Acceptance for personalized treatment regimens when
they deviate from guideline driven treatment algo-
rithms.

4. How to evaluate safety and efficacy in the absence of
data from randomized blinded clinical trials? In other
words, do we need to develop a new conceptional
framework for an assessment of evidence from per-
sonalized treatment and the collection and reporting
of such findings that in its cumulation would be an
equivalent to randomized clinical trials?

5. Uncertainties regarding efficacy and safety of mono
over combination therapies with other kinase
inhibitors, ICIs and other therapeutics.

6. How to avoid severe toxicities in the various treatment
algorithms, and how to manage them?

Depicted in Figure 9B are the various targets which are
currently exploited in the treatment of LC and other solid
tumours. Furthermore, we identified blood borne DEMs,
which control expression of highly regulated kinase in
LC, and Figure 9C shows the wealth of blood borne miR-
NAs that carry the potential to serve as biomarker for
safety and efficacy of kinase-based therapies. We also pro-
vide examples for specific blood borne miRNAs linked to
CDK inhibitors and the receptor kinase KIT. Thus, we
raise the possibility of considering DEMs as predictive
biomarkers for KI treatment. Depicted in the graphical
abstract is a schema of the proposed therapeutic concept,
and the underlying decision tree for the selection of kinase
inhibitors.

5 CONCLUSIONS

We propose the broad use of kinase inhibitors based on the
individual needs of a LC patient.
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