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Abstract
Biological regulatory networks are dynamic, intertwined, and
complex systems making them challenging to study. While
quantitative measurements of transcripts and proteins are key
to investigate the state of a biological system, they do not inform
the “active” state of regulatory networks. In consideration of that
fact, “functional” proteomics assessments are needed to deci-
pher active regulatory processes. Phosphorylation, a key post-
translation modification, is a reversible regulatory mechanism
that controls the functional state of proteins. Recent advance-
ments of high-throughput protein kinase activity profiling plat-
forms allow for a broad assessment of protein kinase networks
in complex biological systems. In conjunction with sophisticated
computational modeling techniques, these profiling platforms
provide datasets that inform the active state of regulatory sys-
tems in disease models and highlight potential drug targets.
Taken together, system-wide profiling of protein kinase activity
has become a critical component of modern molecular biology
research and presents a promising avenue for drug discovery.
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Introduction
Interconnectivity of biological regulation
Complex biological entities that resulted from millions
of years of evolution orchestrate intertwined, dynamic,
and elastic biological systems. Regulation of these

elaborate systems is even more convoluted and difficult
to untangle because it involves many factors operating
on different molecular levels. Due to these regulatory
factors, the amount of information that can be extrap-
olated from one molecular domain to another is limited.

Even though theories of how molecular systems inter-
face are fairly developed, the means of practically
measuring these active molecular domains is lagging.
Thus, assumptions must be made that may not reflect
the true nature of how biological systems are regulated.

A useful example relates to studies of mRNA expres-
sion. It is a common practice to use mRNA expression
as a proxy for protein abundance. However, several
studies showed that only w40% of protein abundance
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can be explained by mRNA expression levels, while the
rest is explained by other factors including post-
translational modifications (PTMs) [1,2]. Extending
this example, protein abundance does not necessarily
reflect protein activity. A recent study analyzed 150
tumor samples and found that phosphorylation at spe-
cific phosphosites and overall kinase abundance are
generally uncorrelated [3]. Taken together, these con-

cepts highlight how assumptions about biological
regulation may confound biomedical research.

In summary, weposit that simple quantitativemeasures of
gene expression levels, including mRNA and protein, fall
Figure 1

Kinase Research Timeline. A historical timeline of events related to protein
nases were essential to understand how kinases operate. This timeline also sh
domains, and first approved kinase inhibitors. The figure also dates technolog
making it easier to quantify kinase enzymatic activity and degree of phospho
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well short of what is needed to understand changes in
biological regulation. For this reason, acquisition of
“functional” data, in conjunction with gene expression
levels, is essential to understand the active state of regu-
lation in complex biological systems.

While high-throughput measurements of genomic,
transcriptomic, and proteomic substrates are well-

established, high-throughput assays of “functional”
proteomics are not prevalent. This is due to the
paucity of highly adopted technologies tailored to
“functional” proteomics, as well as the high cost
associated with utilizing existing platforms.
kinases. Early discoveries of the structure and mechanisms involving ki-
ows the first efforts of cataloguing all protein kinases, mapping their active
ies and databases that were developed to expand kinase research by
rylation in a high-throughput fashion.

www.sciencedirect.com

www.sciencedirect.com/science/journal/14714892


Active kinase networks in molecular biology Alganem et al. 119
As one examines the suite of functional protein types,
protein kinases rank above the others in terms of in-
fluence due to the high interactivity, ubiquitous
expression, and functional relevance of these enzymes.

Biological context of protein kinases
Biological systems are comprised of complex protein
interactions that power the underlying functionalities of
all physiologic processes. Thousands of proteins have
evolved to work in concert with other proteins to
construct localized subnetworks that drive generalized

and specialized biological functions. Some protein
families are among the most interconnected proteins,
including transcription factors and chaperone proteins
[4]. However, in several large interactome (proteine
protein interactions) studies, protein kinases are
consistently found at the top of the most interactive
biological entities [4,5]. Supporting this notion, there
are over 500 protein kinases in the human genome
which phosphorylate w30% of all cellular proteins [6].
As a result, kinases are a central part of several dense,
interconnected, and complex regulatory networks. Pro-

tein kinases have been the center of tremendous
research efforts that span several decades to investigate
their structures and functions (Figure 1) [7e13].
The complexity of the active kinome
The active kinome is the broad-based activity of the
complete set of protein kinases. It is a dynamic system
that is context dependent, multivariate, and responsive
to endogenous and exogenous stressors [14]. The nature
of dynamic regulation mechanisms governed by protein
kinase interactions is well established for certain protein
kinase cascades [15]. However, crosstalk mechanisms
between kinase cascades are more challenging to study
because these mechanisms deviate from the relatively
simplistic linear signal transduction flow. Crosstalk
mechanisms connect multiple linear cascades to act as

interconnected subnetworks in which modulation in one
part of a network can have secondary or compensatory
effects in other parts of a network [16,17]. These sec-
ondary or compensatory effects present a major chal-
lenge for protein kinase drug discovery, as acquired drug
resistance is a common response to many protein kinase
inhibitors [18]. In order to investigate these crosstalk
mechanisms, the active role of protein kinase networks
in biological systems must be assessed using holistic
measurements to fully map and model protein kinase
interactions. Interestingly, the term “kinome” has

become more favored compared to “kinase cascades” in
recent years (Figure 2).

In this review, we examine the past and current trends
of kinase research and highlight the importance of
studying protein kinases as networks with the aid of
recent advancements of high-throughput active kinome
technologies and computational modeling.
www.sciencedirect.com
The landscape of protein kinase research
Historically, the study of protein kinases was directed

first towards their involvement in protein kinase cas-
cades as the mechanism of transducing and amplifying
extracellular stimuli via activation of receptors coupled
to protein kinases [19,20]. Protein kinase cascades,
intrinsically necessary for signal amplification because of
protein kinase bioenergetic constraints, were viewed
later as distinct from protein kinase networks, the in-
teractions serving as the primary mechanism by which a
cell regulates physiologic processes [20,21]. In this
fashion, protein kinase networks were first conceptual-
ized in 1987, in a groundbreaking paper comparing

protein kinase networks to transistor circuitry, the
“signal” being protein phosphorylation and the “gain”
being regulation of protein kinase activity within the
network [21]. Indeed, the notion of protein kinase
networks as a primary regulatory mechanism in cells
prompted landmark discoveries of many complex phys-
iologic processes. For example, the widely cited work
published in 1991 by O’Dell & colleagues established
kinase networks as essential to long-term potentiation, a
process now understood to be a molecular correlate of
learning and memory, critical for neuroplasticity,

neuronal development, and pathophysiology of neuro-
logical disorders [22e26].

As new innovations and discoveries are made in the field
of biology, research on kinase networks has also evolved.
A study from 2014 used a bioinformatic approach to
investigate protein kinase networks, finding that the
majority of research on the subject was focused on
proteineprotein interactions instead of kinase-substrate
interactions, which would provide more information
regarding kinase function [27]. Following up on this

work, we used a text mining approach to identify
changes in word usage over time in kinase research. The
word ‘kinase’ was used as the query and four groups of
5000 documents were generated over four different date
ranges (2001e2005, 2006e2010, 2011e2015, and
2016e2020). Examining the patterns of word usage,
there is a shift from focusing on individual nodes of
particular kinases or a cascade towards a focus on the
holistic view of kinase networks (Figure 3).
Perturbed protein kinase networks
Perturbations in protein kinase signaling pathways have
long been implicated in many diseases, especially cancer
[28,29]. While some cancers are caused by specific
mutations in a given protein kinase, mutations in genes
related to how a protein is phosphorylated occur in

approximately 90% of tumors [30]. Mutations in these
genes, also known as phosphorylation-related single
nucleotide variants (SNVs), map to “network rewiring
mutations” that change how protein kinases interact
[30,31]. As such, rather than an inherent mutation in
one coding region of a particular kinase, variations in
Current Opinion in Pharmacology 2022, 62:117–129
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Figure 2

The Frequency patterns of “Kinase Cascade” and “Kinome” in kinase research. Using Google Books Ngram English 2019 corpus, the term fre-
quencies of "kinase cascade" and "kinome" averaged by year and normalized by the frequency of the term "kinase."
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phosphorylation regions may rewire the interaction
network of a specific protein kinase.
Changes in the interaction network of a protein kinase
may explain why inhibition of an individual protein
kinase may not be an effective therapeutic strategy

[32,33]. Broadly inhibiting protein kinases and phos-
phorylation targets which are highly perturbed in cancer
may correct for aberrations in other cellular signaling
networks, reversing pathologic cellular states.
Recent work in hepatocellular carcinoma exemplifies
how kinase network studies are more informative than
isolated studies focused on a particular kinase. Because
most hepatocellular carcinoma drugs target protein ki-
nases, researchers posit kinase-dependent signaling
networks as drivers of hepatocellular carcinoma pro-
gression [34]. Integrating active kinome data resulting
from treatments with approximately 300 kinase in-
hibitors across 17 hepatocellular carcinoma cell lines,
investigators revealed kinase networks that promote

drug resistance and epithelialemesenchymal transition
[34]. These data also identified novel anti-cancer phar-
macotherapeutic targets that provide urgently needed
Current Opinion in Pharmacology 2022, 62:117–129
new possibilities for the development of effective he-
patocellular carcinoma drugs [34].
Protein kinases as drug targets
To date, over 73 small molecule protein kinase inhibitors
have been approved by the FDA, with many more un-
dergoing clinical trials (Table 1) [35,36]. In the year

2020 alone, eight orally active kinase inhibitors were
approved, and 175 other compounds are currently in
clinical trials around the world [37]. Protein kinase in-
hibitors typically reduce the activity of kinases involved
in known cancer-causing signaling pathways. Unfortu-
nately, gene and protein expression are not sufficient to
fully understand how these disease pathways may be
rescued by targeted therapies [38]. Assessments of
functional proteomics, kinase enzymatic activity, and
post-translational modifications are needed to under-
stand drug response and sensitivity.

Kinase inhibitors developed for a single target may have
promiscuous structural moieties that allow for docking
at the ATP-binding pocket of many kinases. This is
indeed a common finding, with previously assumed
single-kinase inhibitors typically exhibiting varying
www.sciencedirect.com
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Figure 3

Semantics shifts in the historical landscape of protein kinase research. A heatmap presenting the trends in kinase research queried from PubMed.
Each row represents the number of occurrences of a particular term within each date range and the values are normalized relative to each term. Negative
values (blue) indicate that the term occurs less frequently in the group compared to others while positive values (red) indicate that it occurs more
frequently. Terms are organized relative to overall trends, with the top group decreasing in usage over time and the bottom group increasing in usage over
time. The middle row represents the query term, “kinase”, and serves as a reference marker for the other terms. In order to detect a change in word
usage, a semi-curated list of fifty terms composed of the most common words and terms deemed relevant to kinases were filtered and presented in this
figure. A clear pattern can be seen when examining the change in word usage: terms such as “hub,” “network,” and “bioinformatics” increase in frequency
over time, indicating that bioinformatic and high-throughput data-driven methods are becoming increasingly prevalent. Interestingly, words such as
“phosphorylation,” “cascades,” and “activity” appear to decrease over time, suggesting that there is less of a focus on the individual nodes of a particular
kinase or cascade and more of a focus on the holistic view of kinase networks.

Active kinase networks in molecular biology Alganem et al. 121

www.sciencedirect.com Current Opinion in Pharmacology 2022, 62:117–129

www.sciencedirect.com/science/journal/14714892


Table 1

FDA approved kinase inhibitors by drug name, approval year,
and primary target.

Drug (Code) Trade name Year
approved

Primary targets

Fasudil (HA 1077) 1995 ROCK1/2
Sirolimus (AY 22989)

Rapamycin
1999 FKBP12/mTOR

Imatinib (STI571) Gleevec 2001 BCR-Abl
Gefitinib (ZD1839) Iressa 2003 EGFR
Erlotinib (OSI-774) Tarceva 2004 EGFR
Sorafenib (BAY 43-9006)

Nexavar
2005 VEGFR1/2/3

Dasatinib (BMS-354825)
Sprycel

2006 BCR-Abl, SRC

Sunitinib (SU11248) Sutent 2006 VEGFR1/2/3, PDGFR
Lapatinib (GW572016) Tykerb 2007 EGFR, ERBB2
Nilotinib (AMN107) Tasigna 2007 BCR-Abl, KIT, PDGFR
Temsirolimus (CCI-779) Torisel 2007 FKBP12/mTOR
Everolimus (RAD001) Afinitor 2009 FKBP12/mTOR
Pazopanib (GW786034)

Votrient
2009 VEGFR1/2/3

Crizotinib (PF 2341066) Xalkori 2011 ALK, ROS1, MET
Ruxolitinib (INCB-018424)

Jakafi
2011 JAK1/2/3, TYK

Vandetanib (ZD6474) Zactima 2011 VEGFR2
Vemurafenib (PLX-4032)

Zelboraf
2011 B-Raf

Axitinib (AG-013736) Inlyta 2012 VEGFR1/2/3
Bosutinib (SKI-606) Bosulif 2012 BCR-Abl
Cabozantinib (BMS-907351)

Cometriq
2012 RET, VEGFR2

Ponatinib (AP 24534) Iclusig 2012 BCR-Abl
Regorafenib (GSK2118436)

Tafinlar
2012 VEGFR1/2/3

Tofacitinib (CP-690550)
Tasocitinib

2012 JAK3

Afatinib (BIBW 2992) Tovok 2013 ERBB1/2/4
Dabrafenib (GSK2118436)

Tafinlar
2013 B-Raf

Ibrutinib (PCI-32765) Imbruvica 2013 BTK
Trametinib (GSK1120212)

Mekinist
2013 MEK1/2

Ceritinib (LDK378) Zykadia 2014 ALK
Idelalisib (GS1101) Zydelig 2014 PI3K
Nintedanib (BIBF-1120)

Vargatef
2014 FGFR1/2/3

Alectinib (CH5424802)
Alecensa

2015 ALK, RET

Cobimetinib (GDC-0973)
Cotellic

2015 MEK1/2

Lenvatinib (AK175809)
Lenvima

2015 VEGFR, RET

Osimertinib (AZD-9292)
Tagrisso

2015 EGFR T970M

Palbociclib (PD-0332991)
Ibrance

2015 CDK4/6

Olmutinib (BI1482694) Tagrisso 2016 EGFR
Abemaciclib (LY2835219)

Verzenio
2017 CDK4/6

Acalabrutinib (ACP-196)
Calquence

2017 BTK

Brigatinib (AP 26113) Alunbrig 2017 ALK
Copanlisib (BAY 806946) 2017 PI3K
Midostaurin (CPG 41251)

Rydapt
2017 Flt3

Table 1 (continued )

Drug (Code) Trade name Year
approved

Primary targets

Neratinib (HKI-272) Nerlynx 2017 ERBB2
Ribociclib (LEE011) Kisqali 2017 CDK4/6
Netarsudil (AR11324)

Rhopressa
2017 ROCK1/2

Baricitinib (LY 3009104)
Olumiant

2018 JAK1/2

Binimetinib (MEK162) Mektovi 2018 MEK1/2
Dacomitinib (PF-00299804)

Visimpro
2018 EGFR, ERBB2, ERBB4

Duvelisib (IPI 145) Copiktra 2018 PI3K
Encorafenib (LGX818) Braftovi 2018 B-Raf
Fostamatinib (R788) Tavalisse 2018 Syk
Gilteritinib (ASP2215) Xospata 2018 Flt3
Larotrectinib (LOXO-101)

Vitrakvi
2018 TRKA/B/C

Lorlatinib (PF-06463922)
Lorbrena

2018 ALK

Alpelisib (BYL719) Piqray 2019 PI3K
Entrectinib (RXDX-101) Ignyta 2019 TRKA/B/C, ROS1
Erdafitinib (JNJ-42756493)

Balversa
2019 FGFR1/2/3/4

Fedratinib (TG101348) Inrebic 2019 JAK2
Pexidartinib (PLX3397) Turalio 2019 CSF1R
Upadacitinib (ABT-494) Rinvoq 2019 JAK1
Zanubrutinib (BGB3111)

Brukinsa
2019 BTK

Avapritinib (BLU285) Ayvakit 2020 PDGFRa
Capmatinib (INC-280) Tabrecta 2020 c-MET
Pemigatinib (INCB054828)

Pemazyre
2020 FGFR2

Pralsetinib (Blu-667) Gavreto 2020 RET
Ripretinib (DCC-2618) Qinlock 2020 Kit, PDGFRa
Selpercatinib (CEGM9YBNG)

Retevmo
2020 RET

Selumetinib (AZD6224)
Koselugo

2020 MEK1/2

Tucatinib (ONT-380) Tukysa 2020 ERBB2
Infigratinib (BGJ 398) Truseltiq 2021 FGFR
Tepotinib (EMD 1214063)

Tepmetko
2021 MET

Tivozanib (AV951) Fotivda 2021 VEGFR
Trilaciclib (G1T28) Cosela 2021 CDK4/6
Umbralisib (TGR 1202) 2021 PI3K, CK1
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affinity towards multiple kinases [39]. This variability in
docking affinity for several kinases may provide advan-
tageous effects on signaling networks if developed with

toxicity and kinome signaling in mind. Many kinase in-
hibitors fail early stage clinical trials due to the side-
effects many of these drugs pose to patients. High-
throughput active kinome screening methods are
needed to determine the effects kinase inhibitors confer
to signaling networks in tandem with toxicity determi-
nation in-vivo.

Current high-throughput active kinome
profiling technologies
Most of the publicly available datasets that inform
kinome signatures are mass spectrometry (MS) derived
www.sciencedirect.com
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signatures of phosphopeptides. However, new high-
throughput kinome technologies are being developed
and adopted by researchers seeking to profile “func-
tional” kinome activity signatures (Table 2). One of
these technologies is the Kinobead platform, also called
multiplex kinase inhibitor beads (MIBs). MIBs are an
enrichment tool that is utilized to determine the degree
of protein expression and phosphorylation of kinases.

MIBs are mostly used to determine the selectivity of
kinase inhibitors against a large set of kinases within
biological samples. This platform takes advantage of the
conserved ATP binding domains in kinases for broad
kinome enrichment. It works by coating a bead surface
with broad-spectrum of promiscuous kinase inhibitors
that target the ATP-binding sites of protein kinases,
capturing hundreds of kinases. This process results in
strong kinome enrichment from complex biological
samples such as cell or tissue lysates. MIBs are often
coupled with liquid chromatographyemass spectrom-

etry (LC-MS) in order to quantify protein kinase
expression levels [40,41]. The combination of MIBs and
LC-MS allows for abundance measurement of protein
kinase activity following different biochemical manipu-
lations. These manipulations are often set up with the
purpose of deconvoluting kinase inhibitor targets [42].
For example, a sample is treated with either a vehicle
control or a kinase inhibitor at different concentrations.
The inhibitor will compete with MIBs on kinase binding
sites resulting in lower enrichment of the compound’s
targets compared to the control samples. As a result,

kinases with lower abundance are mapped as targets for
the tested compound. While this platform offers a
powerful technique to deconvolute a compound’s tar-
gets within complex biological samples, it has some
limitations. These limitations include 1) it does not
directly assess protein kinase activity, 2) only kinases
that exhibit a conformation change (typically phos-
phorylation) are bound by these beads, and 3) the
platform relies on well characterized protein kinase in-
hibitors, requiring some a priori knowledge of targets. A
priori knowledge of the kinase inhibitors used with
MIBs is needed to assess which kinases these inhibitors

fail to capture.

A similar assay is KiNativ. Instead of using a coated bead
to capture kinases, it uses biotinylated acyl-phosphates
of ATP and ADP soluble probes. These probes modify
the conserved lysine residues in the ATP binding site
found in most kinases [43]. Similar to MIBs, when
coupled with mass spectrometry (MS), these tagging
probes allow for identification and abundance mea-
surement of hundreds of kinases. While also a powerful
technique, it has the same limitations of MIBs. Neither

of these platforms directly assess protein kinase activity,
and they must be coupled with MS for quantification of
protein levels.
www.sciencedirect.com
Another active kinome assay is the KINOMEscan plat-
form. KINOMEscan is a competitive binding assay,
designed to test and quantify the binding characteristics
of test compounds with a large panel of purified kinases.
This platform can test binding characteristics of 489 ki-
nases with multiple panels available of different families,
groups, and combinations of kinases, designed for specific
and broad studies. In this assay, DNA-tagged purified

kinases bind to immobilized ligands which are positioned
on a solid support (beads). In the presence and absence
of a test compound, the degree of binding of kinases to
ligands is compared to assess the selectivity of the com-
pound. Screening is performed by measuring the amount
of captured kinase using qPCR that detects a tagged
DNA in each kinase. The results of the assay can be used
to determine the degree of selectivity of the tested in-
hibitors, as well as the dissociation constant (Kd) which is
calculated by measuring the amount of kinase captured
as a function of the concentrations of the inhibitor [44e
46]. While a valuable kinase profiling technology,
KINOMEscan is a biochemical assay of isolated protein
kinases outside cellular context; it thus does not account
for cellular localization, kinase activity, or regulation via
other domains or proteineprotein interactions present in
complex biological systems. This limitation is what con-
stitutes the main difference between KINOMEscan and
assays like Kinobeads and KiNativ. Despite these limi-
tations, KINOMEscan is a promising platform that may
be used for an initial broad assessment of kinase inhibi-
tor selectivity.

The reverse phase protein array (RPPA) is another
high-throughput technology that can be utilized for
profiling kinome signatures. RPPA is a protein array
composed of immobilized cell or tissue lysate printed
on nitrocellulose-coated slides. Utilizing automated
staining systems, these slides are probed with approxi-
mately 500 validated primary antibodies followed by
biotinylated secondary antibodies [47]. The slides are
scanned and analyzed using different software tools for
high-throughput assessment of protein expression and
post-translational modification. RPPA is a highly sensi-

tive functional proteomics platform that provides
derived data on post-translational modifications beyond
phosphorylation, such as acetylation and glycosylation.
The major limitations of this platform include the need
for highly specific primary antibodies and the labor-
intensive process of sample array printing. However,
various improvement and automation features for this
platform are under development to streamline the
RPPA pipeline and workflow [47].

The Library of Integrated Network-based Cellular Sig-

natures (LINCS) program developed an assay, called the
P100, to measure a set of 96 phosphopeptide probes
[48]. It was designed to overcome the challenges of the
Current Opinion in Pharmacology 2022, 62:117–129
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Table 2

Summary table of high-throughput kinome profiling techniques.

Active Kinome Profiling Technologies

Technique Description Advantages Limitations Barriers to Entry

Mass Spectrometry (MS) � Measures mass spectra of
phosphopeptides

� Involves phosphopeptide fragmentation
� Often coupled with chromatography to

determine expression

� Widespread data and tools
availability

� Ease of integration with other
techniques

� Does not directly measure
kinase activity.

� Reproducibility across samples.

� Core based (local core at
University, requires
buying a Mass
Spectrometer)

Multiplex Kinase Inhibitor
Beads (MIBS) or Kinobeads

� Coupled with MS to determine the
degree of protein expression and
phosphorylation levels.

� Often used to determine the selectivity
of kinase inhibitors in a biological
context.

� Uses a set of beads coated with kinase
inhibitors that target the ATP-binding
domains of kinases passed over it.

� Results in strong kinome
enrichment.

� Allows for deconvolution of
kinase inhibitor targets with
biochemical manipulations.

� Relies on a priori knowledge of
well characterized kinase
inhibitors.

� Biased toward kinases that
exhibit conformational changes.

� Does not directly measure
kinase activity.

� The enrichment process
is followed by MS

� Core based (local core at
University, requires
buying a Mass
Spectrometer)

KiNativ � Similar to Kinobead/MIBS, except it
uses biotinylated acyl-phosphate
probes.

� Probes modify conserved lysine
residues in the kinase ATP binding site.

� Measures the identification and
abundance of kinases that are being
assayed.

� Generates data with high fidelity.
� Can identify and measure

abundance for most of the
kinome.

� Does not directly measure
kinase activity.

� Must be coupled with LC-MS for
quantification of protein levels.

� Fee for service (i.e.,
samples sent away to
the company)

KINOMEscan � Competitive binding assay that uses test
compounds to analyze target kinases.

� Determines the status of ATP-
competitive inhibitors.

� Calculates the dissociation constant of a
particular compound.

� Broad applications as well as
specific applications due to its
diverse array of settings.

� Covers 489 kinases, which is a
substantial amount of the
human kinome.

� Independent of a cellular context,
meaning it does not account for
localization, regulation, or
activity.

� Compounds being tested must
be known.

� Does not directly measure
kinase activity.

� Fee for service (i.e.,
samples sent away to
the company)

Reverse Phase
Protein Array (RPPA)

� Profiles kinome signatures using
immobilized cell lysate on slides.

� Slides are probed with primary
antibodies followed by biotinylated
secondary antibodies.

� Computer scans each slide to detect
protein expression and post-
translational modification patterns.

� Highly sensitive, provides
information on other post-
translational modifications be-
sides phosphorylation.

� Platform is high-throughput with
improvements under active
development to streamline the
analysis

� Highly specific primary
antibodies are required.

� Workflow includes a laborious
sample-array printing process.

� Does not directly measure
kinase activity.

� Core based (local core at
University, requires
buying a pin-based con-
tact printer and signal
scanner)

P100 � Measures a set of 96 phosphopeptide
probes using targeted MS.

� Measurements are stored as
standardized phosphoproteomic
signatures and stored in a database.

� Same set of peptides can be
measured across multiple
different samples for
reproducibility.

� Does not directly measure
kinase activity.

� Biased towards STKs with a
limited amount of PTKs.

� Large publicly available
database

� Requires expertise for
targeted enrichment of
peptides followed by MS
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MS technologies, most notably the inability to repro-
ducibly measure the same phosphopeptides across
multiple samples. This targeted MS approach utilizes
standardized phosphoproteomic signatures that can be
easily compared against each other. The LINCS project
used this assay to generate hundreds of cell-culture
derived phosphoproteomic signatures following expo-
sure to different chemical perturbagens. All of these

signatures are publicly available under the iLINCS
portal (http://www.ilincs.org/). There are some limita-
tions with the P100 assay, including that it does not
directly measure kinase activity and is primarily
comprised of serine/threonine peptides, leaving the
tyrosine subkinome unexplored. While these are
important limitations, the P100 approach has a high
potential to accelerate drug discovery based on “func-
tional” profiling.

The development of peptide array platforms such as

the PamGene Ser/Thr (STK) and phospho-tyrosine
(PTK) chips permits simultaneous profiling of kinase
activity for hundreds of protein kinases in complex
biological samples. The PamGene platform is a well-
established, highly cited, microarray technology for
multiplex kinase activity profiling [49e54]. The
PamChip is composed of a grid of reporter peptides
that can be phosphorylated by kinases present in the
sample. These reporter peptides are w13aa long and
immobilized on a three dimensional (3D) structure.
This design allows for higher concentration of peptides

which will increase the sensitivity of the signal and
reduce noise. Each reporter peptide contains a single
or multiple phosphorylation sites that can be phos-
phorylated by multiple upstream kinases. Once these
sites are phosphorylated, they are detected by fluo-
rescently labelled anti-phospho antibodies. To maxi-
mize binding kinetics and reduce reaction time, the
samples are pumped back and forth through the array
throughout the duration of the assay. As a result, the
assay profiling can be complete in under two hours.
During that time, the LED imaging system captures
continuous images of the fluorescent antibodies

allowing real time measurement of relative phosphor-
ylation intensities at each reporter peptide. The
PamGene platform has been successfully deployed
across multiple research domains and generated
actionable scientific insight in neuroscience, cancer
biology, and anti-cancer drug development. The
PamGene system does not require isolation or immo-
bilization of the protein kinase for assay specificity.
This permits assessment of almost any biological
sample, where the net effects of all the interactions
between kinases and kinase regulating molecules are

reflected in the results. One limitation of the
PamGene platfrom is that reporter peptides on the
STK and PTK chips may be phosphorylated by mul-
tiple protein kinases, requiring sophisticated bio-
informatic software packages to process kinase
Current Opinion in Pharmacology 2022, 62:117–129
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substrate associations for accurate upstream kinases
analyses. This platform has other limitations, including
the pre-selection of printed peptides on the chips and
the split of Ser/Thr and Tyr substrates into two
different chips. Other limitations include non-specific
binding of antibodies and the required deconvolution
methods to map upstream kinases to explain the vari-
ation of the phosphorylation signals. Even though

these are notable limitations, the PamGene peptide
array provides a powerful high-throughput profiling
technique to measure kinome activity in complex
biological samples.

All of these platforms generate rich and high-dimensional
datasets that need to be expertly analyzed to model
complex kinase networks. Unfortunately, due to the
novelty and low adoption of kinome-based technologies,
widespread kinome analytic efforts lag behind the well-
established genomic, transcriptomic and proteomic

based analyses. However, due to the nature of kinases
interactivity, high-throughput kinome signatures provide
ideal datasets for computational network modeling.
Active kinome computational modeling
Kinase networks and their complex nature make them
an attractive target for computational modeling [55].
The availability of the mathematical and computational
tools allows researchers to develop kinase network
models that are more complex and able to provide a

wider array of testable hypotheses.

For computational modeling to generate accurate and
usable models, it is necessary for a database of kinase
knowledge to exist. Savage and Zhang have recently
published a comprehensive list of these resources [55].
They categorize these data sources to include databases
that have information about Kinases (e.g., KinWeb [56],
KinBase [57], KinaseNET), databases on phosphoryla-
tion sites (e.g., PhosphoPep [58], Phospho.ELM [59],
PHOSIDA [60]) and resources for kinase substrate and

site prediction (e.g., PHOSIDA predictor [60], GPS
[61], DeepPhos [62]). These databases have become
essential to the modeling of kinase networks.

The attempts to model kinase networks can be broadly
categorized, based on the focus of the approach, into two
categories: targeted, and general. The targeted ap-
proaches tend to focus on specific pathways and networks
and aim to study how such networks and pathways are
affected in different states of perturbation. For example,
this modeling approach was used to identify the role of

JAK/STAT pathway in inflammatory cascades that lead to
oncogenesis [63]. The general approaches, on the other
hand, expand the focus to include all kinases that are part
of the biological sample and aims to identify both known
and novel kinase networks.
Current Opinion in Pharmacology 2022, 62:117–129
The more recent but welcome trend has been aimed to-
wards global profiling of the active kinome. These global
or general approaches look at the total complement of
protein kinase activity in a given biological sample. These
approaches, alongside traditional biochemical assays, can
be used both for hypothesis generation and confirmation.
These approaches usually rely onmass spectrometry data.
Three approaches that should be mentioned here are

Phosphomatics [64], PhosphoPICK [65] and PHO-
NEMeS [66]. These approaches all use the data obtained
from mass spectrometry to identify kinase-substrate
phosphorylation events. These events are then put in a
putative order by taking into account other data like
known pathways, protein abundance, transcriptomic data
and existing expert knowledge. There are also tools like
CARNIVAL, which rely on multiple data sources,
including the differentially expressed genes and tran-
scription factor binding sites as input to generate net-
works [67,68].

There are other promising tools that do not necessarily
rely on mass spectrometry data for causal modeling, such
as Bayesian networks. Bayesian networks are graphical
models that allow for learning of the dependence
structure between variables while keeping the network
as simple as possible [69,70]. There are multiple tech-
niques to infer networks from data, including score-
based methods that allow for assigning a value to the
network and then noting the effect of changing a link on
the network score and constraint-based methods that

use statistical tests to identify conditionally indepen-
dent nodes and identify linkages.

Score-basedBayesian networkmodelingwas the approach
used by Sachs et al. [71,72], as it was particularly suited to
the problem of inferring kinase networks given the con-
straints of Bayesian networks and the availability of multi-
parameter single cell flow cytometry data. The strength of
this approach was the insight that each cell could be
considered as a separate sample. This allowed Sachs et al.
to overcome the limitation of sample size. This approach,
along with perturbation-based modeling, has enabled

scientists to identify key connections in the active kinome
and their functional implication [73]. This has also
allowed for further innovation, utilizing more advanced
techniques, such as piece-wise linear regression [74].

However, Bayesian networks are not the only way to
identify kinase interaction networks. Other approaches
can include applying novel techniques and algorithms or
devising novel ways to deploy already established tech-
niques. Hijazi et al. have utilized bespoke algorithms,
using existing phosphoproteomic databases to predict

novel interactions and validate them in cancer cell lines
[75]. Their approach relies on generating kinase-
substrate signatures using kinase inhibitors as modula-
tors. Their algorithm, called Expectancy of Being
www.sciencedirect.com
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Downstream Target (EBDT), uses existing knowledge
to overcome the problem of kinase and kinase inhibitor
promiscuity. The EBDT Algorithm is a multistage pro-
cess that is seeded by two kinds of data: The fold-
change value of each phosphosite and the compound
inhibitor specificities. In essence, EBDT first identifies
the inhibitors for a specific kinase, and then compares
that to the activity in the form of log fold change for each

phosphosite. Intuitively, if inhibition of a kinase causes a
corresponding decrease in the phosphorylation of a
given phosphosite, it is likely to be a downstream target
of that kinase. This algorithm iterates over the input
data of phosphosite changes and kinase inhibitor profiles
to generate the network.

Astl and Verkhivker used molecular dynamic simulation
and selective allosteric modulation to infer the kinase
network implicated in the modulation of ABL kinase
[76]. They utilized molecular dynamic simulations of

ABL kinase in complex with both activators and in-
hibitors. This approach was augmented by using selec-
tive in silico perturbation of individual residues to
identify regulatory events. Network analysis was done
both at the individual protein level by representing the
protein structure as a network with residues as nodes,
and at the community level by including related pro-
teins. Other approaches use similar methods of molec-
ular dynamics and ordinary differential equations to
identify links between kinases [77,78].

Computational modeling provides a convenient way to
visualize networks of kinases and their interactions.
Despite their shortcomings, computational modeling of
kinase networks is a promising new direction for
kinome research.
Conclusions
Given the complexity of biological systems, deciphering
regulatory biological networks of complex diseases is

needed to understand disease pathogenesis and predict
potential drug targets. The limited success of untan-
gling these regulatory networks solely on gene expres-
sion measurements highlights a need for holistic
“functional” molecular assessments to unravel the
active components within these intricate networks.
Since phosphorylation is a key post-translation modifi-
cation mechanism that plays a critical role in many
cellular regulatory processes, studying the active
kinome is essential to provide a more sophisticated
representation of regulatory processes. As the

complexity of the active kinome has become more
apparent, profiling technologies that assess hundreds of
protein kinases simultaneously have been developed
and adopted to extend our knowledge of the active
kinome role in complex disease models and drug re-
sponses. While studying single protein kinases will
remain essential in biochemical confirmation/validation
www.sciencedirect.com
studies, omics techniques that assess the active kinome
represent the future for this growing field. Combined
with computational modeling, as well as bioinformatic
drug discovery tools, the active kinome provides a novel
vehicle for a deeper understanding of biological systems
and a promising new avenue for drug target discovery.
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