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Introduction
Glioblastoma (GBM) is the most common and devastating form of  primary brain cancer. Median survival 
remains around 15 months despite decades of  research (1). Standard adjuvant therapy for GBM includes 
6 weeks of  fractionated radiotherapy (RT) (typical total dose around 60 Gy) with concomitant systemic 
therapy using the alkylating agent temozolomide (TMZ) (75 mg/m2 daily), followed by 6–12 months of  
adjuvant TMZ (150–200 mg/m2 for 5 days every 28 days) (2). While O6-methylguanine-DNA methyl-
transferase promoter methylation is a known predictive marker for GBM response to TMZ (3), there are 
no validated predictive or prognostic molecular indicators for RT response in GBM (4). GBM almost 
invariably recurs, and recurrent tumors frequently acquire resistance to conventional therapies. In recent 
years, several potential radiation resistance mechanisms have been postulated, including transcriptional 
reprogramming (5), epigenetics (6), cell state plasticity (7), irradiation changes to normal brain tissue (8, 
9), metabolic alterations (10), and epithelial-mesenchymal transition (11), to name a few. Still, there is a 
dearth of  accurate preclinical models, especially of  recurrent, therapy-resistant tumors, which are in most 
cases responsible for patient mortality (12).

Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are 
largely unknown, with a dearth of accurate preclinical models. To address this, we generated 
8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy–selected (RTS) 
resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; 
RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent 
tumors following serial radiation therapy. Indeed, while whole-exome sequencing showed 
retention of major genomic alterations in the RTS lines, we did detect a chromosome 
12q14 amplification that was associated with clinical GBM recurrence in 2 RTS models. A 
potentially novel bioinformatics pipeline was applied to analyze phenotypic, transcriptomic, 
and kinomic alterations, which identified long noncoding RNAs (lncRNAs) and targetable, 
PDX-specific kinases. We observed differential transcriptional enrichment of DNA damage 
repair pathways in our RTS models, which correlated with several lncRNAs. Global kinomic 
profiling separated RTU and RTS models, but pairwise analyses indicated that there are 
multiple molecular routes to acquired radiation resistance. RTS model–specific kinases were 
identified and targeted with clinically relevant small molecule inhibitors. This cohort of in 
vivo RTS patient-derived models will enable future preclinical therapeutic testing to help 
overcome the treatment resistance seen in patients with GBM.
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Here we have generated 8 pairs of  GBM patient-derived xenografts (PDXs) in which the radiation- 
sensitive, unselected (RTU) tumors were irradiated for in vivo serial selection to create recurrent,  
radiation therapy–selected (RTS) variant PDXs. This models a common therapeutic strategy whose out-
comes unfortunately lead to acquired therapy resistance in patients (13). These patient-matched, paired 
PDXs allow the comparison of  primary and recurrent tumors to better understand the trajectories of  
molecular mechanisms in tumor recurrence.

Two recent longitudinal studies in glioma have reported that selective pressures and driver mutations 
tend to occur early in glioma development, with little change at the genomic level following recurrence 
(14, 15). This may suggest that phenotypic changes such as acquired therapy resistance are not driven at 
the genomic level but instead at the epigenetic, transcriptomic, and posttranslational levels. To this end, 
we have conducted whole-exome sequencing (WES) as well as deep RNA sequencing (RNA-Seq) of  
total RNA in order to study transcripts including long noncoding RNAs (lncRNAs). LncRNAs can act as 
molecular sponges for microRNAs or transcription factors, scaffolds for enhancer or repressive complexes,  
guides for chromatin remodeling enzymes, or as signals for gene activation (16, 17). The Pan-Cancer 
Analysis of  Whole Genomes consortium has recently identified 122 lncRNAs with causal roles in cancer 
tumorigenesis, a number of  which overlap with our results (18).

In order to identify lncRNAs and their potential targets, we have devised an in silico approach using 
quasi-mapping of  long, paired-end reads (19) combined with nucleic acid binding prediction software using 
thermodynamics-based algorithms to detect RNA:RNA duplex or RNA:DNA triplex formation (20, 21) 
(see Methods section). We also combine traditional differential gene expression analysis (DE) with differ-
ential gene correlation analysis (DGCA) (22), machine learning (23, 24), and semantic network construc-
tion (25, 26) to further elucidate transcriptional mechanisms of  therapy resistance. These approaches have 
revealed differential regulation of  DNA damage response (DDR) pathways as well as stemness, cell cycle, 
and chromatin remodeling signatures. We have noted differential enrichment of  canonical DDR pathways 
at the transcriptomic level in vivo after selection. A number of  lncRNAs are associated with the differential 
expression of  transcripts in these pathways.

We evaluated our RTS models by integrating global kinase (kinomic) activity and transcriptomic data 
to identify radiation-induced changes in baseline signaling and expression. Kinase signaling is highly ther-
apeutically targetable in neoplasms (27), and radiation therapy has been demonstrated to induce malig-
nant phenotypes through modulation of  Src and tropomyosin receptor kinase (Trk) family kinase signaling 
among others (28, 29). Our results showed that radiation therapy selection induced targetable kinase activ-
ity alterations. Clinically used small molecule inhibitors (SMIs) sitravatinib and brigatinib (30, 31), with 
known brain penetrance, were effective in RTS GBM models. The application of  our integrated informatics 
approach using these clinically relevant models provides a method for selecting preclinical therapies for 
intractable, therapy-resistant tumors.

Results
Serial in vivo radiation of  GBM PDXs generates RTS derivatives. A cohort of  20 heterotopic (subcutaneous) 
GBM PDXs were screened for sensitivity to radiation. Tumor growth was measured externally using 
calipers, and radiation response was defined as “resistant” (n = 8) if  the median-doubling time of  the 
initial tumor volume was significantly less than 20 days, “sensitive” (n = 10) for doubling times greater 
than 20 days, or “intermediate” (n = 2) if  not significantly different from 20 days (Figure 1A). Of  these, 
existing Affymetrix transcriptomic microarray data were available for 13 PDX lines (n = 7 sensitive,  
n = 6 resistant). We found that 18 genes were significantly upregulated, and 8 genes were significantly 
downregulated in the inherent resistant group (Supplemental Figure 1A; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.148717DS1). Overrepresentation analysis of  
these 26 genes revealed no significant enrichment at an FDR of  less than 0.05; therefore, we took the top 
10 results (Supplemental Figure 1B). CXCR3 receptor binding was the top result driven by the significant 
downregulation of  ligands CXCL10 and CXCL11 in inherently resistant PDXs. Protein binding was the 
most enriched molecular function Gene Ontology term followed by ion binding (Supplemental Figure 
1C). The top enriched gene set from gene set enrichment analysis (GSEA) using the Molecular Signa-
tures Database (MSigDB) H and C6 sets was hallmark coagulation, but the BCAT.100_UP.V1_DN set 
was also significantly enriched (Supplemental Figure 1D). This was primarily driven by high snail family 
transcriptional repressor 2 expression in resistant PDXs (one of  the top overexpressed genes in DE). 



3

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(16):e148717  https://doi.org/10.1172/jci.insight.148717

Enrichment of  this set indicates enhanced β-catenin expression/activity in inherently resistant PDXs. 
While inherent radiation resistance has importance, acquired (or adaptive) radiation resistance is the more 
pressing clinical problem for GBM. Therefore, we sought to develop adaptive radiation-resistant models. 
Eleven PDXs (RTU) underwent serial in vivo selection (6–8 serial passages) against radiation therapy 
(Figure 1B). Three of  these lines were consistently “cured” by radiation therapy and were thus unable to 

Figure 1. GBM PDX RT-selected models exhibit differences in survival and molecular diversity. (A) Initial RT sensitivity status and median doubling 
times for tumors after RT. (B) Serial in vivo RT selection methodology. (C) RTS (red dashed line) and RTU (blue solid line) combined endpoint probabilities 
following initiation of radiation treatment. P value calculated from log-rank test. (D) Changes in median doubling time pre- and post-RT selection. The box 
plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquar-
tile range. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. P values calculated by 2-sided t test. (E) Basic characteristics of PDXs used for RTS with 
patient sex (M, male; F, female), patient age, and original source. UAB, University of Alabama at Birmingham. (F) Log2 fold change copy number calls from 
patternCNV for GBM hallmark genes. Median survival intracranial (n = 6). Median doubling time (n = 5) per pair (n = 80 total).
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complete the radiation selection process. However, Figure 1C shows the difference in doubling time as 
combined endpoint probabilities of  the remaining sensitive, RTU lines (solid blue line) and their paired 
resistant (RTS) lines (dashed red line). The median endpoint probability for the doubling time of  the 
combined RTU lines was reduced by 85% compared with the median of  the RTS lines from 35 to 5 days 
(P < 0.001). Eight PDXs were successfully selected for resistance to radiation with parent and selected  
tumor doubling times as indicated (Figure 1D). Basic clinical demographic information for these lines 
(Figure 1E) and a GBM hallmark driver gene panel (Figure 1F) are shown. Of  note, CDKN2A/B were 
deeply deleted in most samples, and JX39P and JX39P-RTS harbor the EGFRVIII variant.

Chromosome 12q14 amplification identified in some RTS PDXs. SNP analyses indicated that RTS PDX 
lines correlated highly with their parent RTU lines (Figure 2A). Like the GBM hallmark driver gene 
panel data, these results suggest that RTS PDX lines mirror clinical data sets (14) by generally main-
taining their classic genomic alterations. However, 2 of  the 8 RTS lines, X1153-RTS and JX14P-RTS, 
were found to have a copy number amplification on chromosome 12q14 (Figure 2B), a locus previously 
identified in patients with recurrent GBM. While 12q amplification could suggest a possible mechanism 
for the acquired radiation resistance in the RTS lines, we anticipated that transcriptome and kinome 
assessment may be more revealing.

Transcriptomic analysis identifies differentially regulated lncRNAs that may have functional roles. Intracranial 
orthotopic xenografts were established, and tumors were harvested in biological triplicate for omics anal-
ysis (32). Each orthotopic tumor was divided in half  for matched kinomic and transcriptomic evaluation. 
Globally, at the transcriptome level, PDX pairs primarily separated based on patient of  origin, with some 
smaller separation based on radiation sensitivity on principal component analysis (PCA, Figure 3A). 
Global DE including patient tumor of  origin and selection status (~PDX_ID + RTS) revealed 482 sig-
nificantly differentially expressed genes (DEGs) (Figure 3B), including 69 lncRNAs and 24 pseudogenes. 
Global DE between the combined RTU versus RTS (~RTS), without patient tumor of  origin as a covari-
ate, revealed 27 significantly DEGs (Figure 3C), including 5 lncRNAs and 1 pseudogene. One of  these 
lncRNAs, cancer susceptibility 19 (CASC19/PCAT2) (ensembl ENSG00000254166.3), was globally 
upregulated in selected PDXs (adjusted P = 0.02) (Supplemental Figure 2A), particularly in JX39P, 
and had predicted DNA binding at several genomic sites (method described in Supplemental Figure 
2B), including sites proximal to mitogen-activated protein kinase 6 (MAP2K6); another globally DEG, 
and sites on the FES proto-oncogene. In the JX39P pair, CASC19 expression is positively correlated  
with expression of  MAP2K6 and FES (Supplemental Figure 2C). Additional differential expression 
analytic approaches were performed, including 2 machine learning methods (FastEMC and WGCNA) 
and DGCA that both identified several lncRNAs and pseudogenes being differentially expressed in RTS 
models that were used for lncRNA correlations (Supplemental Figure 3).

To elucidate potential regulatory roles of  the differentially expressed lncRNAs, a pipeline incorporated  
RNA:RNA (ASSA) and RNA:DNA (Triplexator) binding prediction software (20, 21) with bedtools 
to identify proximal genes to lncRNA:DNA binding sites (Supplemental Figure 2B). Presumptive cis- 
regulatory targets for the significantly altered lncRNAs were identified as genes that were common to both 
the lncRNA:DNA proximal gene list and the pairwise DEG list. Nine lncRNAs were predicted to bind 
directly to a combined 28 differentially regulated genes identified in upstream analyses (Figure 3D). DNA 
binding potential was discovered for 45 lncRNAs at several thousand sites across regulatory regions of  
the human genome (Figure 3D). Some lncRNAs (CASC19/PCAT2, SOX2-OT, ZFAS1, PAQR9-AS1, 
and USP2-AS1) possessed both RNA:RNA and RNA:DNA binding potential. Searching a 20 kb win-
dow upstream and downstream from these predicted DNA binding sites, we discovered 4268 proximal 
genes (Figure 3D). Correlative analysis revealed both strong positive and negative correlations between the 
expression of  lncRNAs and proximal genes (Supplemental Figure 3 and Supplemental Data 1). The highest 
correlated genes were associated with several cancers or cancer-related pathways, including GBM, astrocy-
toma, neuroblastoma, leukemia, lymphoma, hepatocellular carcinoma, gastric cancer, stemness, angiogen-
esis, invasion, proliferation, and DDR (Supplemental Data 1). Specific pairwise correlations are detailed in 
Supplemental Figure 4, and gene interaction networks (WIPER) are shown in Supplemental Data 2.

Acquired radiation-resistant tumors display distinct DDR pathway alterations. One of  the hallmarks of  radia-
tion resistance is increased or altered DDR activity. Figure 4, A–F, show the normalized enrichment scores 
of  RTS versus RTU PDXs for 12 DDR transcriptional signatures. It was not possible to generate normal-
ized enrichment scores for JX12P, X1465, or X1066 due to the imbalanced number of  replicates. Globally, 
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as well as in the JX39P pair, Fanconi anemia (FA), MMR, NER, NHEJ, HR, and chromatin modification 
signatures were enriched in RTS PDXs (Figure 4, A and E). X1516 also showed similar DDR enrichment 
to global, except that BER was enriched in RTS PDXs with NER conversely decreased (Figure 4B). The 
JX14T pair had similar enrichment to global and JX39P, except that NER and MMR were significantly 
decreased in the RTS lines (Figure 4D). In the X1153 pair, BER, NER, MMR, and FA were enriched in 
RTS PDXs, while HR, NHEJ, and chromatin modification were decreased in RTS PDXs (Figure 4F). 
The JX12T pair was the most divergent from the other RTS PDXs, with all 12 DDR signature normalized 
enrichment scores decreased for RTS over RTU PDXs (Figure 4C).

Several lncRNAs showed strong associations with significantly differentially expressed DDR genes. In 
the X1153 pair, AC008764.8 showed a negative correlation with FA-related gene FANCC (Figure 4F and 
Supplemental Figure 3). Also, AC124290.1 and AUXG01000058.1 showed strong positive correlations 
with the HR-related gene SEM1 (Figure 4F and Supplemental Figure 3). SOX2-OT was positively correlat-
ed with NHEJ-related XRCC4 and to a lesser extent with RAD9A (Supplemental Figure 3). In the JX39P 
pair, AC002456.1 was negatively correlated with HR-related RBBP8 (Figure 4E) and positively correlated 
with NER-related MNAT1 and NHEJ-related XRCC5 (Supplemental Figure 3).

Figure 2. Identification of chromosome 12q14 amplification in select GBM PDX-RT models. (A) Multidimensional scaling (MDS) of SNP correlations 
from whole-exome sequencing (WES) data. A distance matrix was calculated between each sample, and a corrplot was made with 1 – (Euclidean 
distance) of the MDS plot. (B) PatternCNV output zoomed-in view for amplification locus in chromosome 12q for JX14P and JX14P-RT (left panel) 
and X1153 and X1153-RT (right panel).
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Kinome profiling identifies PDX-specific actionable targets in RTS PDXs. Global kinomic profiling of  RTU 
and RTS pairs revealed common and PDX-specific alterations in kinase signaling. As opposed to global 
transcriptomic analysis, the kinomic profiles separated PDXs primarily by resistance status (RTU or RTS) 
(Figure 5, A and B). Globally, kinase signaling was decreased in RTS compared with RTU, when the 
samples were analyzed together. However, this appeared to be driven by a small subset of  samples, such 
as X1066 and X1516, that had relatively large kinase activity decreases in RTS compared with RTU (Sup-
plemental Data 3). Across PDX pairs there was large variation in altered kinase signaling, with some RTS 
having globally decreased activity in Src family kinase and growth factor pathways (X1066, Supplemental 
Data 3), as well as PKC-centric decreases (X1516).

Next, upstream kinases alone, and integrated with differentially regulated lncRNA:DNA binding proxi-
mal genes, were analyzed at the pathway level (Supplemental Data 4). Src family kinase activity was upregu-
lated in RTS in the integrated analysis of  JX14P and JX39P while being decreased in X1153 and X1465 RTS. 
Ephrin receptor activity was increased in RTS variants of  JX14P and X1465. We observed increased activity 
of  EGFR and VEGFR signaling in X1153. As we are interested in evaluating pharmaceutical targets, we 
focus here on those actionable kinases that exhibited increased activity in the RTS PDXs.

Figure 3. GBM PDXs grossly separate according to patient tumor of origin, with a small number of significantly differentially expressed genes between 
RTU and RTS. (A) PCA of global transcriptomic differences. (B) Heatmap of globally DEGs when modeled as ~ PDX_ID + RTS. (C) Volcano plot of globally 
DEGs when modeled by ~RTS alone (red text meets cutoffs of log2 fold change > 2 or < –2, adjusted P < 0.05). (D) Circos plot of differentially regulated 
lncRNAs (red) with their direct DNA binding targets (black) and differentially regulated lncRNAs (blue) with their DNA binding sites.
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Figure 4. Differential enrichment of DDR pathways and response to DNA damage in PDX pairs. Enrichment of DDR pathways in RTS globally (A), in X1516 
(B), in JX12T (C), in JX14T (D), in JX39P (E), and in X1153 (F). The outside edge of the radar plot is labeled and color-coded by DDR pathway. Lines and bars 
within the plot indicate the normalized enrichment score (–2 to 2) for each DDR signature. Red bars indicate enrichment in the RTS PDX, and blue bars 
indicate enrichment in the RTU PDX. Significantly DEGs within each pathway along with their significance level and log2 fold change are listed in the boxes 
color-coded to match the DDR pathways in the radar plot. P values for differential expression are from Fisher’s exact test. Underlined genes are correlated 
with the expression of lncRNAs, which are labeled next to the DDR gene. (+) indicates a positive correlation with expression and (–) indicates a negative 
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To test the druggable potential of  the kinases increased in Figure 5, C–E, and Supplemental Data 
4, in vitro SMI screening was conducted using sitravatinib and brigatinib in PDX-derived neurosphere 
cultures. Sitravatinib targets TRKA/B (JX14P-RTS, JX39P-RTS), ROS1 (JX14T-RTS), Src (JX14P-RTS,  
JX39P-RTS), as well as multiple Ephrin isoforms. Brigatinib targets ROS1 (JX14T-RTS) and the canonical 
GBM target EGFR (JX39P-RTS) (30, 31). We observed that JX14T-RTS, JX39P-RTS, and JX14P-RTS  
were significantly sensitive to both sitravatinib and brigatinib (Figure 5F).

Confirmatory Western blot array analyses were performed using the R&D Systems Proteome Profiler 
Human Phospho-Kinase Arrays on paired RTU and RTS from JX14P, JX14T, JX39P, and X1465. As 
shown in Figure 6, A and B, the RTS lines for JX14P, JX14T, and JX39P exhibited increased phosphory-
lation of  multiple kinases and/or kinase targets, including Src family kinases (SFKs) (Figure 5). However, 
X1465-RTS showed phosphorylation decreases or no appreciable changes compared to its RTU line except 
for STAT2 (Y689) and AKT (S473), which were modestly elevated. These results supported the PamSta-
tion kinomic profiling of  X1465-RTS, which showed decreased SFK activity relative to its RTU parent 
(Supplemental Data 4). Additionally, an upstream kinase comparison was performed to integrate the Pam-
Station kinomic profiles and the R&D Systems based on the Phosphonet database (see Supplemental Fig-
ure 5). Top increased kinases, validated from the previous kinomic screen, included increased Hck, Yes1, 
and Src (JX14P-RTS); increased Lyn and Src (JX39P-RTS); and increased JNK2 (X1465-RTS). Across 
3 of  the 4 RTS lines, there were increases in activity of  Src family, PIM family, MSK1, PYK2, and JNK 
kinases. Additionally, BRK was activated as the top kinase in JX39P-RTS and scored high in JX14P-RTS 
and JX14T-RTS as compared with parental RTU lines (Supplemental Figure 5).

Discussion
We generated, characterized, and validated several GBM PDX models of  radiation resistance (RTS) from 
their radiation-sensitive parental (RTU) PDXs and identified levels of  transcriptomic and phenotypic 
heterogeneity and mechanisms of  acquired resistance. We qualitatively observed a general increase in 
the invasive potential of  orthotopic RTS PDXs when dissecting intracranial tumors and quantitatively 
showed that RTS tumors were more aggressive with substantial reduction in orthotopic PDX overall sur-
vival in vivo. We performed genomic, transcriptomic, and functional proteomic (kinomic) testing on these 
models with results supporting our contention that these models are clinically relevant. Indeed, we found 
that mutational drivers were generally retained upon radiation selection, a finding previously observed in 
GBM patients with longitudinal molecular testing (14, 15). When we did detect new amplifications, they 
tended to be supported by the clinical literature (33), such as the chromosome 12q14 amplification seen in 
2 of  the 8 RTS pairs. Transcriptomic analyses demonstrated the tumor models tended to group based on 
the tumor of  origin rather than RTS status, suggesting that acquired radiation resistance may be context 
dependent. Within individual GBM PDX pairs, however, our transcriptomic analyses suggested several 
potential pathways to acquired radiation resistance. Additionally, there were RTS-mediated differences 
in the enrichment of  numerous GBM-related gene signatures, including stemness, cell cycle, chromatin 
remodeling, IFN/STAT1 signaling, and molecular subtypes.

We observed a contrast in the type of  changes from RTU to RTS between global transcriptomic and 
global kinomic profiling. At the kinome level, samples separated clearly based on radiation selection status 
and not by patient tumor of  origin. This speaks to the downstream, function-level effects of  radiation selection 
with relatively fewer changes at the transcriptional level. Gross transcription appears to be driven by the inher-
ent genetic background of  the original patient tumor, while the acquired resistance phenotype is functionally 
distinct at the kinome level. This could suggest that small differences at the transcriptomic level, possibly in 
lncRNA expression, could have large downstream functional impacts. This is consistent with our knowledge 
that lncRNAs can have diverse, often concurrent, molecular roles despite their relatively low abundance (17).

We detected both common and PDX-specific differential enrichment of  upstream kinases between 
RTU and RTS PDXs. In X1066 and X1516, kinase activity was mostly repressed in RTS PDXs, potentially  
indicating a more homeostatic condition, characteristic of  senescent or stem-like cells. In some cases, 
activities of  SFKs (JX14P/T, JX39P) and EGFR (X1465, JX39P, JX12T) are increased in RTS PDXs. 
Brigatinib, an anaplastic lymphoma kinase and EGFR inhibitor, was effective at killing radiation-resistant 

correlation. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. HR, homologous recombination; NHEJ, nonhomologous end joining; BER, base exci-
sion repair; NER, nucleotide excision repair; MMR, mismatch repair; Mod, modification.
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Figure 5. Kinase signaling alterations in RTS targeted with SMIs. PCA demonstrates separation of kinomic signal signatures across 3 components (A), 
colored by RTS (red) and RTU (blue) with the first 2 components plotted (B). Kinases altered in RTS compared with RTU for JX14P (C), JX14T (D), and 
JX39P (E) were modeled with GeneGo MetaCore direct-interaction or auto-expand < 20 node networks. Uploaded kinases are indicated with circles as RTS 
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cells in 3 selected RTS PDX lines (Figure 5F). Sitravatinib, targeting Trk, Src, and Ephrins among oth-
ers, was also efficacious in these 3 PDX lines (Figure 5F). Of  note, brigatinib has demonstrated clinical 
intracranial efficacy for lung cancer brain metastases, suggesting potential application in recurrent GBM 
(34). Sitravatinib has been identified as a potential therapy for overcoming immune checkpoint blockade 
resistance (35). As targeting the immune checkpoint blockade has had limited clinical benefit in GBM, 
it is possible that combining it with drugs such as sitravatinib would be more beneficial. Src and Trk 
family kinases are induced by radiation treatment in breast cancer cells and in human umbilical vein 
endothelial cells (28, 29), while Src has long been considered a therapeutic target in GBM (36). Recently 
published work has shown that in vitro radiation selection of  human and mouse-derived glioma stem cells 
can induce the insulin like growth factor 1 receptor–mediated (IGF1R-mediated) resistance pathway via 
N-cadherin upregulation. IGF1R inhibition could reverse this radiation resistance, which was validated 
in 2 of  our RTS lines, JX14P-RTS and JX39P-RTS (11). Together, these findings suggest that resistance 
models can be used to identify druggable targets for recurrent, therapy-selected tumors.

RTS PDX models displayed increased in vivo resistance to RT, though there is diversity in the enrichment 
of  DDR signatures (Figure 4), indicating potentially different routes to acquired radiation resistance. Given 
the high degrees of  intra- and intertumor heterogeneity observed in GBM, it is expected that each individual 
tumor could adapt differently under therapeutic pressures. Our cohort of  selected tumor pairs provides a wide 
range of  molecularly diverse phenotypes for interrogation. Almost universally (excepting JX12T), FA-related 
DDR was enriched in RTS PDXs. The FA core complex of  8 proteins is located in the nucleus and respon-
sible for surveillance for DNA double-stranded breaks (37). This complex ubiquitinates FANCD2, which 
is also phosphorylated by ATM, prompting its interaction with the BRCA1/2 complex that also contains 
RAD51 (38, 39). In this way, FA genes promote DDR primarily through the high-fidelity HR pathway (40). 
The enrichment of  the FA-related gene signature may therefore indicate a preferential reliance on this sur-
veillance mechanism in acquired radiation resistance. HR and NHEJ were also frequently enriched in RTS 
PDXs, the exceptions being JX12T and X1153. X1153-RTS PDX appears to rely more on BER, NER, and 
MMR mechanisms. Interestingly, GSEA using our DDR gene sets revealed an enrichment of  10 out of  12 sig-
natures in inherently resistant tumors, but only NER passed the FDR significance threshold of  <0.25. On the 
whole, differential basal expression, perhaps due to distinct genetic/epigenetic backgrounds, described most 
of  the variance in the model. Radiation resistance status captured a small amount of  the variance, supporting 
our thinking that radiation resistance is mediated at a posttranscriptomic/epigenetic level.

Many DDR genes are located proximal to significantly differentially regulated lncRNAs with DNA 
binding sites in the regulatory genome. Some of  these lncRNA:DDR gene associations show positive 
and/or negative correlations in expression, especially in FA and HR (Figure 4, E and F, and Supplemen-
tal Figure 3). Our data suggest a relationship between lncRNAs and DDR pathway modulation. It is 
possible that this is accomplished through epigenetic regulation caused by the direct binding of  lncRNAs 
to regulatory regions of  DNA proximal to DDR gene loci.

Our in silico pipeline identified 184 lncRNAs differentially regulated between radiation-sensitive RTU 
and RTS PDXs. Some, SOX2-OT, ZFAS1, SAMMSON, CASC19/PCAT2, and PVT1, have already been 
associated with various cancers, including gliomas (18, 41, 42). The majority of  the lncRNAs identified in this 
study represent potentially novel transcripts with limited to no information available about their associations 
or mechanisms. We evaluated the RNA binding potential of  these lncRNA transcripts. Nine lncRNAs had 
predicted RNA binding capacities with such targets as ZNF154, a putative tumor suppressor in nasopharyn-
geal carcinoma and prostate cancer (43, 44); JAK3, a tyrosine kinase implicated in leukemias and lympho-
mas (45, 46); and SOX11, which may act as a tumor promoter or suppressor in various cancers, including 
glioma (47). Forty-five lncRNAs are predicted to bind DNA in regulatory regions of  the human genome and 
have strong correlations with DEGs proximal to those binding sites. We have observed that associations with 
lncRNA and their potential targets can be either negative or positive, similar to the DDR relationship.

The lncRNA AF106564.1 demonstrated positive correlations with the FIP1L1-PDGFRA fusion tran-
script and with neurotrophic receptor tyrosine kinase 3 (NTRK3) (Supplemental Data 1). Fluorescent in 
situ hybridization using the Vysis LSI 4q12 Tri-Color rearrangement probe was not able to confirm the 

increased (red) or decreased (blue). Lines between nodes indicate interactions with color indicating type (green; positive, red; negative; gray; other). PDX 
tumor cells were grown as neurospheres, and viability was measured after 7-day treatment (500 nM sitravatinib or brigatinib) with CellTiter-Glo (CTG) (F) 
and displayed as percentage of vehicle control with bars for SEM, with ***P < 0.0001 calculated using 2-way ANOVA.
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presence of  a canonical deletion in the 4q12 region that leads to the FIP1L1-PDGFRA fusion product in 
heterotopic PDX. This is a limitation as the transcript level detection was performed with orthotopic and 
not with heterotopic PDXs, highlighting the differences in molecular signaling dependent on locations of  
tumor implantation. Amplification of  this region may lead to poorer outcomes as PDGFRA is a putative 
oncogene in glioma and FIP1L1 is constitutively expressed in oligodendrocyte precursor cells (48). The 
association of  AF106564.1 with NTRK3 (ensembl ENSG00000140538) is also intriguing as NTRK genes 
code for tyrosine kinase receptors for growth factors in the CNS and activating fusions such as ETV6-
NTRK3 or BTBD1-NTRK3 have oncogenic potential in some subsets of  high-grade glioma (49). Coex-
pression of  these pairs of  genes is observed in some of  our RTS PDX models. This suggests that lncRNAs 
may regulate gene fusions that are a hallmark of  many neoplasms.

Several potential limitations for our study should be noted. First, radiation therapy selection occurred 
in a heterotopic tumor location and within immunocompromised (athymic) mice. While prior data suggest 
that implanting tumors in subcutaneous sites or even culturing in serum-free neural stem cell media and 
later reimplanting in orthotopic sites does not compromise model fidelity (50, 51), there is concern that 
subcutaneous selection might influence tumor evolution or restrict tumor diversity. While our RNA-Seq 
data mapped highly to humans, suggesting a limited number of  murine cells in the bulk sample, we did 
perform DE for mouse transcripts and found that mitochondrial genes were significantly decreased in RTS 
lines compared with RTU lines (Supplemental Figure 6), suggesting that the radiation selection of  GBM 
tumors alters the recruitment of  nontumor stromal cells and that these nontumor stromal cells are func-
tionally unique from the cells recruited by the parental tumor. Another potential limitation is the lack of  
detailed patient clinical characteristics for the original tumors used to generate the PDXs. Our molecular 
data, however, suggest that our models retain diversity and display features that mirror recurrent clinical 
specimens. Future work will confirm the master regulatory potential of  the numerous lncRNA targets that 
were identified, particularly in their connection with DDR and kinase activation. Moreover, most SMIs 
effectively target multiple kinases. As such, the relative contribution of  individual kinases associated with 
the RTS phenotype is unclear based on drug treatment (or response) alone. Additional studies are needed 
to pinpoint the key kinase regulators in the RTS tumors, including in vivo experimentation.

Figure 6. Phospho-kinase Western blot array shows differential phosphorylated proteins in GBM PDX-RTS pairs. (A) R&D Systems Proteome Profiler 
Human Phospho-Kinase Arrays for RTU and RTS pairs for JX14P, JX14T, JX39P, and X1465 shown with equal protein loading. (B) Heatmap showing relative 
change in phospho-antibody spot intensity with at least 25% difference as compared with parent tumor signal.
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To our knowledge, our in vivo RTS GBM PDX models are unique in the field. The differential enrich-
ment in vivo of  GBM kinase signaling is recapitulated in vitro, allowing for this model system’s versatility 
in the study of  GBM tumor recurrence. Our in silico lncRNA analysis pipeline has identified known and 
potentially novel lncRNAs associated with therapy resistance. We have presented evidence that links sev-
eral lncRNAs to DEGs in a variety of  differentially regulated key GBM molecular pathways. Our results 
are consistent with the known regulatory roles of  lncRNAs and may suggest this class of  molecules as 
potential therapeutic targets in the treatment of  recurrent, intractable GBM as well as in other cancers. We 
have also shown that our integrated workflow is able to reveal actionable lncRNA-related pathway targets 
using SMIs that have efficacy in recurrent, therapy-selected tumors. The combination of  these RTS models 
with matched global kinomic and transcriptomic analysis represents a likely novel preclinical method for 
identifying druggable targets in intractable, recurrent GBM tumors.

Methods

PDX generation
PDXs were established from either primary or recurrent GBM surgical specimens obtained from the 
Brain Tumor Tissue Core of  UAB under IRB and IACUC approval. These PDXs were established by 
injecting tumor chunks from patient tumors into the flank of  athymic nude mice (Charles River Lab-
oratories). These tumors were then serially passaged in mice with periodic cryopreservation of  tumor 
chunks at various passages for future cultivation and study. Additional PDXs were acquired from CD 
James (Northwestern University, Chicago, Illinois, USA) and JN Sarkaria (Mayo Clinic, Rochester, Min-
nesota, USA), including 4 tumors that are isogenic to 4 of  these parental PDXs from Sarkaria based on 
selection of  TMZ-resistant tumors from previously TMZ-sensitive PDXs (52). A total of  20 GBM PDXs 
were initially included in our screenings for this study.

PDX in vivo radiation screening and selection
Radiation screening and selection were performed in heterotopic PDXs cultivated in athymic nude mice. 
Ionizing radiation was delivered using an X-Rad 320 (Precision X-Ray Irradiation) and measured using 
a dosimeter placed in the treatment field. Heterotopically tumor-implanted mice (n = 5 per group) were 
anesthetized and administered 6 fractions of  2 Gy each over a period of  2 weeks with doses delivered 
on Monday, Wednesday, and Friday. Radiation administration was initiated when the average tumor 
volume of  the 5 mice was measured to be approximately 200 cc. Tumor volume was measured using 
tissue calipers a minimum of  3 times per week during and following the treatment period. Tumor volume 
was calculated using the modified ellipsoid formula ½ (length × width2) (53, 54). The endpoint of  the 
assay was defined by the time in days it took for the tumor to double in volume from its initial volume 
on the first day of  irradiation. Tumor doubling time less than 20 days was defined as resistant to therapy 
and longer than 20 days was sensitive. Tumors found to be initially radiation sensitive then underwent 
serial selection for 6–8 rounds of  radiation therapy. The fastest growing tumor from each previous round 
was harvested and implanted heterotopically into nude mice (n = 2) for the subsequent radiation round. 
Highly sensitive tumors that were “cured” by the standard 12 Gy treatment received only 3 × 2 Gy frac-
tions for the initial 2 rounds of  selection, after which the dosage was returned to the standard course. 
After the selection rounds were completed, repeat screening with 5 mice per group was performed to 
confirm the resistant, RTS phenotype.

Orthotopic PDXs
Orthotopic PDXs were established by stereotactic intracranial injection of  300,000 tumor cells, dissociated 
from flank tumors, suspended in 5 μL of  5% methylcellulose in DMEM (32). Tumors from control mice 
were resected and snap-frozen in liquid nitrogen for later molecular analysis.

WES
Genomic DNA was extracted from flash-frozen tumors using the QIAGEN DNeasy Blood & Tissue Kit. 
Sequencing libraries were prepared using the Illumina TruSeq DNA Exome kit, prior to pooling in groups 
of  12 and sequencing using a NextSeq 550 (Illumina) with a NextSeq 500/550 High Output Kit v2.5 (150 
cycles) using paired-end settings (2 × 75).
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SNP calls. Raw paired-end exome reads were mapped to a human (hg38) and mouse (mm10) com-
bined reference genome using TopHat (version 2.1), which uses bowtie2 (version 2.3.3) as its underlying 
short read mapper. Next, an mpileup file was created using bcftools (version 1.6). bcftools was then 
used to call variants. Vcftools.pl varFilter was then used to filter the calls by sequence read depth (min-
imum depth 500 nucleotides across all samples). The called SNPs that passed this quality thresholding 
were then used as input to SNPRelate (version 1.26.0) within R (version 4.1.2). The first 10 principal 
components were extracted from SNPRelate and were then used to perform MDS. A distance matrix 
was calculated between each sample, and a plot was made (using corrplot package version 0.92) with  
1 – (Euclidean distance) of  the MDS plot.

Copy number alteration calls. Raw paired-end exome reads were mapped to a human (hg38) and mouse 
(mm10) combined reference genome using bowtie2 (version 2.3.3). Next, raw reads were aggregated using 
patternCNV script bam2wig.sh. PatternCNV pipeline was run per manual with default parameters. Log2 
fold change calls data were extracted from patternCNV workflow. Data were concatenated and imported 
into R for data visualization. Exon-level data was summarized by gene using dplyr package. Pheatmap 
package was used to create a heatmap. In addition, genome-wide plots were visually examined for recur-
rent large copy number alterations in the individual RT pairs. Two RTS lines had large chromosome seg-
ment amplifications in copy number at chromosome 12q. A zoomed-in view of  this locus is shown in the 
parental line and the RTS lines for the 2 affected PDXs (Figure 2B).

RNA-Seq
Orthotopic tumors were resected from mouse brains, divided into 2 halves that were placed in sterile 
screw-cap vials (Sarstedt), and snap-frozen in liquid nitrogen. Samples were stored at –70°C until used. 
One half  of  the tumor was used for RNA isolation and the other for protein lysate. RNA extraction was 
performed using the Norgen Animal Tissue RNA extraction kit following the kit instructions. Snap- 
frozen tissue was first ground into a powder using a mortar and pestle, then processed according to the 
Norgen kit. RNA was quantified using a NanoDrop (Thermo Fisher Scientific), and 50 μg of  RNA 
was sub-aliquoted for RNA-Seq. RNA-Seq was performed by GENEWIZ. RNA integrity and fragment 
size were tested using RNA ScreenTape (Agilent Technologies TapeStation) with average RNA integrity 
numbers of  8.5 and average fragment length around 4500 nt. The samples were then depleted of  rRNA 
before conducting stranded library preparation. Sequencing using biological triplicates for each sample 
was performed on an Illumina HiSeq 2000 using 150 bp paired-end reads with a median of  around 72 
million reads per sample. FastQC reports were generated pretrimming and posttrimming of  low-quality 
bases (Phred score < 20) and Illumina adapter sequences using trim-galore-0.4.5. Quasi-mapping and 
quantification were performed using Salmon-0.12.0 (with --gencode and -k 31 flags for index generation 
and -l ISR, --gcBias, and --validateMappings flags for quantification) against the Gencode GRCh38.p12 
release 31 reference transcriptome. A multiQC report was then generated including the use of  FastQ 
Screen (v0.11.2 with dependencies to bowtie2 v2.3.3 and SAMtools v1.6) to identify the proportions of  
mouse to human transcripts detected. Three replicates were excluded from further analysis due to high 
mouse transcript contamination. We retrospectively determined from resection notes that these high 
mouse content tumors were highly infiltrative and hemorrhagic upon resection. A tx2gene table was then 
generated from a TxDB object using Bioconductor genomicfeatures-1.32.3. This table and the quant.sf  
files from Salmon were then read using tximport (v1.16.1), biomaRt (v2.44.4), and DESeq2 (v1.28.1) to 
generate normalized expression tables used in further in silico analysis.

Kinomic analysis
Kinome profiling was performed in the UAB Kinome Core as done previously (55, 56). Another portion of  
the same snap-frozen orthotopic tumor was lysed with pestle grinding for 30 minutes in M-PER lysis buffer 
(Pierce) at 4°C to extract protein (Bradford assay quantified) for kinomic analysis. Samples (15 μg PTK,  
2 μg STK per array), in biological triplicate, were processed and run on the tyrosine (PTK; 86402 Pam-
Chips, PamGene) or serine/threonine (STK; 97102 PamChips) arrays, testing phosphorylation kinetically 
against 196 (PTK) or 144 (STK) 12 to 15 amino acid substrate targets on the PamStation12 (PamGene). 
Phosphorylation of  peptides was measured over 154 (PTK) or 164 (STK) cycles, with exposures from 
10 to 200 ms that were integrated into slopes, multiplied by 100, and log2-transformed in BioNavigator 
(v6.3) (PamGene). Mean peptide phosphorylation per PDX (i.e., mean of  replicates) was used for heatmap 
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clustering (unsupervised geometric means-distance), and change per PDX pair per barcode was used for 
upstream kinase prediction (UpKin PamApp; PTK v6.0, STK v6.0) and for PCA (Shiny PamApp). Kinas-
es with a mean final score > 2.0 or mean kinases statistic > 5.0 were retained.

In vitro drug response viability assay
PDXs were propagated as neurospheres, cultured in PDX media (DMEM/F12) (50/50 with 2% B27, 
20 ng/mL EGF, 20 ng/mL basic FGF, 1% sodium pyruvate, 1% penicillin and streptomycin) similar 
to our prior reports (57). Neurospheres were dissociated for 20 minutes with Accutase (Innovative Cell 
Technologies) at 37°C, viability-quantified with trypan blue utilizing the Countess II (Thermo Fisher 
Scientific), and plated at 500–1500 viable cells per 100 μL for 24 hours prior to treatment with indicated 
doses of  brigatinib and sitravatinib (Selleckchem). After 7 days, CTG reagent (Promega) was added at 20 
μL per well for 30 minutes at 37°C, prior to reading luminescence on the BioTek Synergy H1 (Agilent). 
Raw values were corrected to untreated (DMSO) control.

Antibody-based phospho-kinase array analysis
PDX cells were maintained in neurobasal media as described previously (57). Cells were lifted from Gel-
trex (Gibco) with Accutase (Innovative Cell Technologies), lysates were collected with supplied reagents, 
and phospho-specific protein abundance was quantified using Phospho-Kinase Arrays (ARY003B, R&D 
Systems). Cells were collected according to the manufacturer’s protocol, with protease and phosphatase 
inhibitors and protein quantified as in the kinomics methods section. A total of  300 micrograms of  protein 
were loaded per array, and probed overnight, prior to secondary application for 4 hours and chemilumines-
cent (PerkinElmer Western Lightning Plus) development and film scanning. Image analysis was conducted 
in ImageJ (v1.53p, NIH) with background removal (rolling ball, 150 pixels, 1200 dpi image) prior to image 
inversion and manual spot selection and intensity quantitation on identical sized regions of  interest. All 
spots were quantified in duplicate. Spots with a mean intensity change of  greater than 25% between groups 
were heatmapped by percentage change using GraphPad Prism 9.

In silico analysis
The DESeq2 R package was used for normalization, clustering, and DE. PCAs were performed using 
the R stats and factoextra packages. DGCA was performed using the DGCA R package (v1.0.2) with 
prefiltering of  zero counts and a filter based on empirical Bayes statistics for DEGs between RTU and 
RTS replicates for each sample. The combined normalized expression table and expression table based 
on pairwise DEG results for each sample were used as an input to FastEMC (v0.0.6), which selected and 
sorted the genes that best discriminated between the sensitive and the resistant phenotype. Normalized 
expression was in parallel used as the input for the WGCNA R package (v1.69), which selected gene 
modules that distinguished between and within samples. The modules within samples were analyzed 
with BEERE to generate interaction networks, which were then entered in Gene Terrain to visualize 
the differential utilization of  genes within the modules between RTU and RTS PDXs. A table of  cDNA 
was converted into FASTA format for lncRNAs, and coding genes were identified by DEG, DGCA, and  
FastEMC using the biomaRt package. FASTAs for lncRNAs and coding genes were inputs for ASSA 
(v1.00) to identify RNA:RNA predicted interactions. FASTAs for the lncRNA and the Ensembl Regulatory 
Build (58) were inputs for Triplexator in order to identify lncRNA:DNA triple helix sites. Triplexator flags  
–m R,Y,M,P,A; –v -of  0; and –rm 2 were used. Results were filtered to remove any results that contained 
errors. LncRNA:RNA and lncRNA:DNA binding results were visualized using Circos. Bedtools (v2.29.2) 
was then used to search 20 kb upstream and downstream from triple helix sites to identify genes proximal 
to these potential binding sites. Genes that were both proximal to the lncRNA binding sites and identified 
as DEGs were considered purported lncRNA cis-regulatory targets. The R corrr (v0.4.2) package was 
used to find correlations between the expression of  lncRNAs and the proximal genes. Correlations were 
also calculated for pairwise and global differentially regulated genes that intersected curated gene sets for 
DDR, stemness, chromatin remodeling, and cell cycle progression, among others. Genes of  interest from 
DEGs, DGCA, FastEMC, ASSA, and Triplexator/BedTools were then input into PAGER and GSEA 
(59, 60) for gene set enrichment analysis. Key terms from PAGER were then combined with the lists of  
differentially regulated genes as input for BEERE, which constructed gene:semantic interaction networks. 
The intersection of  DEGs from each PDX pair with lncRNAs and their proximal genes was used as 
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input to WIPER, which identified key gene pair relationships and generated lncRNA:mRNA transcript 
interaction networks. In parallel, upstream kinomics data were combined with lncRNA proximal genes of  
interest using MetaCore/GeneGo (Clarivate Analytics) for integrated pathway analysis.

Inherent radiation resistance analysis
To assess the transcriptomic differences between inherently resistant and sensitive tumors, we performed 
differential expression analysis between these 2 groups (n = 7 sensitive, n = 6 resistant) using Affymetrix 
array data (Whole Transcript Human Exon 1.0 ST). Data were quantile-normalized together with the 
downloaded Affymetrix Human Exon 1.0 ST data of  the core TCGA samples (61). Data were then sum-
marized into expression levels for each gene using the pipeline previously described (62). PDX samples 
were run in triplicate and collapsed using the average expression. The EdgeR and limma R packages 
were used to perform the differential expression analysis. Samples were grouped into a DGEList object, 
and then normalization factors were calculated. The model used for analysis was ~0+PDX_ID+RT_Sta-
tus to account for differences in radiation status as well as tumor-specific baseline differences. The dis-
persion was then estimated using the estimateDisp() function. We then tested the differences between 
inherently resistant and sensitive tumors using the exactTest() function. A Benjamini-Hochberg–adjusted 
P value of  0.05 was used as the significance threshold. Overrepresentation analysis was then performed 
in WebGestalt using available Gene Ontology and pathway databases. Enrichment analysis was also 
performed using the Broad GSEA program using the default settings and a combination of  MSigDB sets 
as well as our custom gene sets.

Figure preparation
Figures 1–4 and 6, along with the graphical abstract, were created with BioRender.com under its academic 
license terms.

Data and resource availability
Requests for data, resources/reagents, software, and further information should be directed to the corre-
sponding author. WES data can be downloaded using accession number PRJNA847439 (https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA847439/) from National Center for Biotechnology Information’s (NCBI) 
BioProject. The RNA-Seq data have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are 
accessible through GEO Series accession number GSE206225 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE206225). Detailed in silico methods are included in the Supplemental Methods.

Statistics
P values for differential expression were calculated using Fisher’s exact test and then adjusted using the 
Benjamini-Hochberg procedure. FDRs were used for all GSEA, ORA, and PAGER results. In vitro growth 
assays including comparisons of  tumor median doubling times were evaluated for significance using a stan-
dard 2-tailed t test. Comparisons of  Kaplan-Meier endpoint probability traces were made using log-rank 
tests. P values less than 0.05 were considered significant.
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