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The Aurora kinase/β-catenin axis contributes
to dexamethasone resistance in leukemia
Kinjal Shah1,2, Mehreen Ahmed1,2 and Julhash U. Kazi 1,2✉

Glucocorticoids, such as dexamethasone and prednisolone, are widely used in cancer treatment. Different hematological
malignancies respond differently to this treatment which, as could be expected, correlates with treatment outcome. In this study,
we have used a glucocorticoid-induced gene signature to develop a deep learning model that can predict dexamethasone
sensitivity. By combining gene expression data from cell lines and patients with acute lymphoblastic leukemia, we observed that
the model is useful for the classification of patients. Predicted samples have been used to detect deregulated pathways that lead to
dexamethasone resistance. Gene set enrichment analysis, peptide substrate-based kinase profiling assay, and western blot analysis
identified Aurora kinase, S6K, p38, and β-catenin as key signaling proteins involved in dexamethasone resistance. Deep learning-
enabled drug synergy prediction followed by in vitro drug synergy analysis identified kinase inhibitors against Aurora kinase, JAK,
S6K, and mTOR that displayed synergy with dexamethasone. Combining pathway enrichment, kinase regulation, and kinase
inhibition data, we propose that Aurora kinase or its several direct or indirect downstream kinase effectors such as mTOR, S6K, p38,
and JAK may be involved in β-catenin stabilization through phosphorylation-dependent inactivation of GSK-3β. Collectively, our
data suggest that activation of the Aurora kinase/β-catenin axis during dexamethasone treatment may contribute to cell survival
signaling which is possibly maintained in patients who are resistant to dexamethasone.
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INTRODUCTION
Acute lymphoblastic leukemia (ALL) is the most common pediatric
malignancy of lymphoid progenitor cells, with ~80% of cases
occurring in children and the remainder in adults1. Glucocorticoids
such as dexamethasone and prednisolone are important drugs in
the chemotherapeutic regimen for the treatment of ALL1. Apart
from their strong anti-inflammatory and immune-suppressive
actions, glucocorticoids induce growth arrest and apoptosis in ALL.
Their action is exerted by binding to the glucocorticoid receptor
(GR), a member of the nuclear hormone receptor superfamily that
also acts as a transcription factor2. Sensitivity to glucocorticoids
serves as a positive prognostic indicator, and patients unresponsive
to glucocorticoids often relapse, which leads to poor prognosis.
Multiple mechanisms of glucocorticoid resistance have been
identified such as alterations in expression and function of GR or
of GR-associated proteins like chaperones and co-chaperones,
thereby affecting their function, and causing defects in the target
genes, leading to the inhibition of apoptosis and defective
metabolism, cross-talk with other cell signaling pathways and
transcription factors, as well as changes in chromatin accessibility2–5.
The current chemotherapeutic regimen used for the treatment

of ALL, which consists of corticosteroids in conjunction with
chemotherapeutic drugs, has resulted in the long-term survival of
80–90% in children and of 40% in adults, though the complete
remission (CR) rates are similar in both groups6. Despite these
positive statistics, the highest cancer-related mortality in children
is associated with ALL due to relapse or treatment-related toxic
effects. This shows a great need for improving the existing
treatments by not only identifying new molecular targets to
develop better and less toxic therapeutic agents but also by
identifying patients who require less intensive therapy7.

The heterogeneity in the patient’s responses to different
treatments has resulted in great advancements in the bioinfor-
matics area, where different machine learning approaches are
used to better match patients to drugs. Several studies have
compared machine learning approaches for monotherapy predic-
tion. The ridge regression model built using baseline gene
expression data from cell lines was shown to outperform several
machine learning algorithms including random forests, nearest
shrunken centroids, principal component regression, lasso, and
elastic net to predict in vivo chemotherapy response8. A landmark
study compared 44 drug sensitivity prediction algorithms in which
genomic, epigenomic, and proteomic profiling data for human
breast cancer cell lines were used9. In that study, models
developed using Bayesian multitask multiple kernel learning and
random forests were found to perform better than other
algorithms. Another large-scale study compared multiple machine
learning algorithms using multi-omics data and reported elastic
net and ridge regression as the top-performing algorithms10.
These studies used several thousand features for a limited number
of samples to develop the model; therefore, the selection of
features might have affected the performance of the algorithm.
Besides those low complexity models, deep learning models have
been implicated in monotherapy prediction11. Because deep
learning models are highly sensitive to the feature-to-sample ratio,
the feature selection approach was found to be an effective
method in which only features highly conserved with the
phenotype were used to build the model12–14. Such methods
are also useful in identifying a potential molecular marker and
driver of sensitivity to the drugs12.
In this study, we employed transcriptomics, peptide substrate-

based kinase profiling, deep learning models, and drug synergy
studies to identify the deregulated signaling pathways in
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dexamethasone-resistant ALL. We show that the short-term
dexamethasone treatment induces the Aurora kinase/β-catenin
signaling axis which is also found to be enriched in ALL patients
that are predicted to be dexamethasone resistant.

RESULTS
Glucocorticoids induce a distinct gene signature in ALL
Long-term treatment with glucocorticoids induces resistance that is
mediated by several mechanisms. Even with the drug that can
induce a complete response, some cells always survive the
treatment. This surviving proportion of cells is referred to as drug-
tolerant cells, which eventually provoke drug resistance. Drug-
tolerant cells display dynamic fluctuations in gene expression,
where survival is thought to be mediated by a group of genes that
are upregulated during the drug treatment15. To understand how
genes are regulated in ALL during glucocorticoid treatment, we
used the SUP-B15 cell line as a model system. SUP-B15 cells are
highly sensitive to glucocorticoids such as dexamethasone and
prednisolone (Supplementary Fig. 1a). We observed that these
drugs at micromolar concentrations inhibited more than 90% of cell
viability after 48 h of incubation (Supplementary Fig. 1b) and
induced a significant level of apoptosis after 24 h of incubation
(Supplementary Fig. 1c). However, apoptosis remained almost equal
to the DMSO control after treatment of the drugs for 4 h or 6 h
(Supplementary Fig. 1c). Therefore, to identify glucocorticoid-
induced gene regulations at an earlier time point, we treated
SUP-B15 cells with dexamethasone (1 µM), prednisolone (2 µM), and
DMSO for 6 h before collecting total RNA. The experiment was
repeated three times and all nine samples were analyzed by
Affymetrix Human Gene 2.0 ST array. Deregulated genes were
identified by individually comparing expression between dexa-
methasone- and DMSO-treated samples, and prednisolone- and
DMSO-treated samples. Significance Analysis of Microarrays (SAM)16

was used to detect the deregulated genes. We used a 5% false
discovery rate (FDR) as the cut-off. Most of the deregulated genes
were common between dexamethasone- and prednisolone-treated
cells (Supplementary Table 1a–d), where 366 common genes were
downregulated (Fig. 1a) and 217 common genes were upregulated
in drug-treated cells (Fig. 1b). A comparison between dexametha-
sone- and prednisolone-treated samples did not result in any
significantly deregulated genes (data not shown). These data
suggest that both dexamethasone and prednisolone act on cells by
a similar mechanism. Upregulated (Supplementary Fig. 2a) or
downregulated (Supplementary Fig. 2b) genes were analyzed by
hierarchical clustering showing several different clusters. However,
clusters for dexamethasone- and prednisolone-treated cells remain
similar, as observed by SAM. Further analysis of the top-listed
commonly upregulated genes also showed similar clusters (Fig. 1c).
Several core cellular signaling regulators such as DUSP1, FBXW7,
Sprouty family proteins, etc. were upregulated in both dexametha-
sone- and prednisolone-treated cells in a similar fashion. Further-
more, gene set enrichment analysis (GSEA) identified enrichment of
similar signaling pathways in dexamethasone- and prednisolone-
treated cells (Fig. 1d, e). Although SUP-B15 displayed potential
variations in gene expression in response to glucocorticoids, several
glucocorticoid-resistant ALL cell lines such as JURKAT, MOLT-4, and
CCRF-CEM did not show any significant difference in gene
expression upon treatment with dexamethasone (1 µM) or
prednisolone (2 µM, data not shown).

Dexamethasone treatment induces activation of serine/
threonine protein kinases
Protein kinases regulate core cellular signaling by phosphorylating
the substrate proteins. Because glucocorticoid treatment potentially
deregulated gene expression leading to specific pathway enrich-
ment, we hypothesized that glucocorticoid treatment will also

modulate the core cellular signaling by altering the activation of
protein kinases. To measure global kinase activity, we used peptide
substrate-based kinase profiling. Pamgene peptide substrate-based
kinase profiling has been demonstrated to be a powerful technique
for determining kinase activity17,18. SUP-B15 cells were treated with
dexamethasone (1 µM) or DMSO for 6 h before lysis. Lysates were
applied to the Pamgene protein tyrosine and protein serine/
threonine chips following the manufacturer’s guidelines. While
comparing kinase activity enrichment between DMSO and
dexamethasone-treated cells, we observed that the activity of
protein tyrosine kinases was completely downregulated in
dexamethasone-treated cells (Fig. 2a) and the activity of several
protein serine/threonine kinases was upregulated (Fig. 2b). To
understand the possible mechanisms of how kinase activities were
regulated, we used the “negative regulation of protein kinase
activity (GO:0006469)” related gene signature to compare gene
expression data in dexamethasone- and prednisolone-treated SUP-
B15 cells. We observed that SPRY1 expression was more than
fivefold upregulated in both dexamethasone- and prednisolone-
treated cells (Fig. 2c). Sprouty family proteins include four members
(SPRY1-4) that can control receptor tyrosine kinase activation19,20.
The upregulation of serine/threonine kinase activity, for example,
Aurora family kinases, Polo-like kinases (PLKs), p70S6K, and PIM2,
seems to be interesting. Further, using a panel of 378 kinase
inhibitors, we observed that ALL cell lines that were either sensitive
(NALM6 and 697) or resistant (TANOUE and JURKAT) to dexametha-
sone were highly responsive to inhibitors targeting Aurora kinases,
PLKs, and PI3K/mTOR pathway components (Supplementary Fig. 3).
Aurora kinase activity can influence several signaling proteins
including β-catenin21. Because we observed that cells treated with
dexamethasone and prednisolone display enrichment in the
β-catenin responsive genes (Fig. 1d, e), we reasoned that Aurora
kinase may regulate the β-catenin pathway in dexamethasone-
treated cells. β-catenin is a component of the canonical WNT
signaling pathway where its protein level is maintained by the AXIN/
APC/CK1/GSK-3β complex. This complex phosphorylates β-catenin
resulting in β-TrCP mediated ubiquitination and, thereby, degrada-
tion in proteasome22. Aurora kinase directly phosphorylates GSK-3β
on serine 9 residue, which reduces the catalytic activity of GSK-3β,
resulting in the accumulation of β-catenin23. We observed that the
β-catenin level was upregulated in dexamethasone-treated cells (Fig.
2d). GSK-3β inactivation can also be mediated by several serine/
threonine kinases such as ERK24, p3825, and AKT26. GSEA shows two
opposite signatures in the MAP kinase pathway: KRAS down-
regulation and MEK upregulation (Fig. 1d, e). We observed that
while ERK phosphorylation was inhibited upon dexamethasone
treatment (Fig. 2e), p38 phosphorylation was upregulated (Fig. 2f).
The KRAS downregulation signature is in agreement with the
downregulation of ERK phosphorylation in dexamethasone-treated
cells. Nevertheless, MEK signaling can activate p38 without
affecting ERK phosphorylation at a certain condition27. Additionally,
dexamethasone-induced activation of p38 was previously described
in dexamethasone-sensitive RS4;11 and SUP-B15 cells28. Finally, cells
treated with dexamethasone displayed an upregulation of S6K
phosphorylation (Fig. 2g), similar to the kinase profiling data (Fig.
2b), while it showed a downregulation of AKT phosphorylation (Fig.
2h). S6K is a downstream effector of the PI3K/AKT pathway and can
be activated by mTORC1 complex26. Likewise, S6K can directly
phosphorylate and inactivate GSK-3β29. However, dexamethasone-
induced S6K phosphorylation is likely to be independent of AKT
activation. Because we observed that ERK and AKT phosphorylation
was inhibited, while p38 and S6K phosphorylation was upregulated
by dexamethasone, we then checked the phosphorylation of their
substrate GSK-3β Serine 9 residue. We observed that GSK-3β Serine
9 phosphorylation was initially reduced and then increased over
time (Fig. 2i). Furthermore, cells treated with the Aurora kinase
inhibitor Tozasertib in the presence of dexamethasone displayed a
reduction of β-catenin accumulation (Fig. 2j), suggesting that Aurora
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kinase activity may be required for β-catenin accumulation in
dexamethasone-treated cells. SUP-B15 cells display constitutive
activation of ERK (Fig. 2e) and AKT (Fig. 2h), which probably
maintains initial GSK-3β Serine 9 phosphorylation. However, later,
this might be mediated by Aurora kinase, p38, and S6K. Several
other kinases such as protein kinase C (PKC) family proteins, protein

kinase A (PKA), ribosomal protein S6 kinase (RSK), etc. can also
phosphorylate GSK-3β at Serine 9 residue30. We have not tested
those kinases in this context and, therefore, we cannot exclude the
possibility of their involvement. Collectively, these data suggest that
β-catenin protein levels are stabilized by dexamethasone-mediated
regulation of multiple signaling pathways.

106 17217

Upregulated genes

Downregulated genes

196 54366

DMSO Dexamethasone Prednisolone

OLAH
STYK1
BAALC
EDNRB
TMEM236
TMEM217
ISG20
BMP2
STAG3
OR7C1
P2RY14
PLEKHG1
LDB3
EPHA4
CHRNA1
GLIS3
RCAN1
TSC22D3
SLC22A23
OR7A5
LILRA2
CALCRL
SMIM3
YBX3
NFIL3
BMP3
ELL2
TMEM204
FKBP5
ZC3H12D
TGFB1I1
NFKBIZ
GP9
NGFR
LMO2
SPTLC3
KLF9
ATMIN
CYTH3
DDR1
TLR5
KLF2
TP53INP1
SMAP2
SLC44A1
DDIT4
LONRF1
DENND3
RASD1
BTG2
ITGA6
EPC1
CPM
TNFSF4
FAM43A
RASAL2
SAP30L
SPRY1
SYNE2
DPEP1
MYO10
DKK1
EPAS1
FBXW7
CTHRC1
PON2
RAPGEF5
VPS37B
KLF7
LDLRAD4
TXNIP
TLE1
RNASET2
GADD45A
DUSP1

4 6 8 10 12
Expression level

a

b
0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42

ES

HALLMARK_KRAS_
SIGNALING_DN

HALLMARK_TNFA_
SIGNALING_VIA_NFKB

HALLMARK_COAGULATION

HALLMARK_APOPTOSIS

HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION

HALLMARK_HYPOXIA

0.06

0.07

0.08

0.09

0.10

0.34

Dexamethasone vs DMSO

NES
1.44
1.46
1.47
1.54
1.61
1.63

0.45 0.5 0.55 0.6
ES

MEK_UP.V1_UP

PTEN_DN.V1_UP

VEGF_A_UP.V1_UP

MYC_UP.V1_DN

IL15_UP.V1_DN

TGFB_UP.V1_UP

KRAS.50_UP.V1_DN

BCAT.100_UP.V1_UP

NES
1.59
1.59
1.61
1.62
1.65
1.67
1.68
1.94 0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.4

0.325 0.35 0.375 0.4 0.425 0.45 0.475

HALLMARK_IL2_
STAT5_SIGNALING

HALLMARK_COAGULATION

HALLMARK_APOPTOSIS

HALLMARK_HYPOXIA

HALLMARK_HEDGEHOG
_SIGNALING

0.10

0.12

0.14

0.16

0.18

0.20

0.3

NES
1.30
1.32
1.32
1.43
1.46
1.52
1.53
1.53

HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION

HALLMARK_KRAS_
SIGNALING_DN

HALLMARK_TNFA_
SIGNALING_VIA_NFKB

Prednisolone vs DMSO

ES

0.35 0.45 0.55 0.6 0.65
ES

MEK_UP.V1_UP

TGFB_UP.V1_UP

IL15_UP.V1_DN

MYC_UP.V1_DN

JNK_DN.V1_DN

PTEN_DN.V1_UP

VEGF_A_UP.V1_UP

BCAT.100_UP.V1_UP

NES
1.35
1.48
1.50
1.52
1.57
1.60
1.78
2.07

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.3 0.4 0.5

c

d

e

Fig. 1 Glucocorticoid-induced regulation in gene expression. SUP-B15 cells were treated with 1 µM dexamethasone, 2 µM prednisolone, or
DMSO for 6 h. Global gene expression was measured by Affymetrix Human Gene 2.0 ST Array. a The number of downregulated genes in
dexamethasone- and prednisolone-treated cells. b The number of upregulated genes in dexamethasone and prednisolone-treated cells. c The
heatmap displaying clusters of upregulated genes in dexamethasone- and prednisolone-treated cells was generated by the heatmap.2
function of Gplots library in R. d Gene set enrichments in dexamethasone-treated cells were measured by GSEA (Hallmarks and Oncogenic
signatures) and visualized by the pyplot.scatter function of Matplotlib. e Gene set enrichments in prednisolone-treated cells were analyzed
and visualized as described above.
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Prediction of dexamethasone sensitivity in ALL
Because we observed that dexamethasone treatment mediates
the deregulation of certain survival signaling pathways, we next
aimed to verify the findings in ALL patient materials. The TARGET

ALL dataset provides more than 200 annotated samples with gene
expression data but is missing dexamethasone sensitivity
information. Therefore, we aimed to predict dexamethasone
sensitivity in those samples. Various methodologies have been
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Fig. 2 Glucocorticoid-induced regulation of kinase activation. SUP-B15 cells were treated with 1 µM dexamethasone or DMSO for 6 h before
lysis. a To measure protein tyrosine kinase activity in dexamethasone-treated cells, lysates were applied in Pamgene peptide substrate-based
tyrosine kinase array and analyzed for tyrosine kinase activity using Pamgene software. b To measure protein serine/threonine kinase activity
in dexamethasone-treated cells, lysates were applied in Pamgene peptide substrate-based serine/threonine kinase array and analyzed for
serine/threonine kinase activity using Pamgene software. c Changes in the expression of Sprouty family genes in dexamethasone and
prednisolone-treated SUP-B15 cells compared to DMSO-treated cells. Error bars show standard deviation. d–i SUP-B15 cells were treated with
1 µM dexamethasone for the indicated time period before lysis. Lysates were analyzed by SDS-PAGE and western blotting using specific
antibodies as labeled. j SUP-B15 cells were treated with 1 µM dexamethasone and with different concentrations of Tozasertib for 24 h before
lysis. Lysates were analyzed by SDS-PAGE and western blotting using specific antibodies as labeled. Blots shown in each panel were from the
same experiment and processed similarly.
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proposed to predict monotherapy response using different
modalities including single nucleotide polymorphisms (SNPs),
copy number variations (CNVs), mutations, DNA methylation,
protein expression, and RNA expression (Reviewed in ref. 11). Both
the Cancer Cell Line Encyclopedia (CCLE)31 and the Genomics of
Drug Sensitivity in Cancer (GDSC)32 provide drug sensitivity scores
and various genetic features for >1000 cell lines. The GDSC dataset
lacks drug sensitivity scores for dexamethasone; therefore, we
used the CCLE dataset to predict dexamethasone sensitivity. The
CCLE dataset contains dexamethasone sensitivity scores for 708
cell lines from different cancers, where 138 cell lines are from
hematological malignancies. The use of RNA expression remains
the most popular modality for drug sensitivity prediction9,10, and
therefore, we used RNA expression data to serve the purpose. The
CCLE RNA expression dataset contains >18,000 genes for each
sample. The use of >18,000 genes with drug sensitivity data for
138 cell lines can perhaps be used to build a prediction model but
the model will suffer from poor generalization performance when
tested on new data. A high-dimensional dataset with too many
features can lead to overfitting such that the model captures both
the real and random effects11. Low complexity models such as
logistic regression, principal component regression, partial least
square regression, or support vector machine can handle higher
dimensional data but, due to the linear nature of the algorithm,
predictions introduce significant modeling bias11,33,34. Deep
learning models provide superior prediction accuracy over linear
models where the number of samples is comparable to the
number of features11. To increase the ratio between sample and
feature, we attempted to reduce the number of genes. We used a
combined gene signature (Supplementary Fig. 4) of 500 genes to
develop a deep learning model. Dexamethasone sensitivity data
for 138 cell lines relating to hematological malignancies were
collected from the PharmacoDB database35 and gene expression
data for those cell lines were collected from the CCLE database.
Cell lines with IC50 < 700 nM were considered sensitive and cell
lines with IC50 > 1000 nM were marked as resistant. We used the
Keras36 sequential model to build the drug sensitivity prediction
model. The model was tested using 708 CCLE cell lines data and
two small ArrayExpress datasets: E-MTAB-7781 and E-MTAB-9250
(Fig. 3a). When combining all three datasets, the model predicted
684 samples as resistant (out of 709) and 43 samples as sensitive
(out of 43; Fig. 3b). The model displayed more than 95%
prediction accuracy, while the negative predictive value was
63% (Fig. 3c). This is because, to test the model, we used a larger
number of resistant samples as compared to sensitive samples.
Overall although the model performed well with these datasets, it
has not been thoroughly tested with a large dataset, and
therefore, we cannot exclude the possibility that the model might
perform poorly with a large unknown dataset. Furthermore, we
observed that in a small set of RNAseq data where three samples
were experimentally defined as sensitive to dexamethasone and
five samples as resistant, the model predicted two samples from
the resistant group as to be sensitive (Fig. 3a). To understand why
the model failed to detect two samples as resistant, we analyzed
the gene expression data (FPKM) from those samples. In this
dataset, three sensitive cell lines (697, NALM6, and RS4;11) were
treated with dexamethasone to generate dexamethasone-
resistant cell lines5. The resistant cell line TANOUE was used as a
control and was also treated with dexamethasone for the same
period. Comparisons between dexamethasone-treated cells and
naïve cell lines demonstrated an extremely high correlation of
gene expression for 697 (R2= 0.9767), NALM6 (R2= 0.9581), and
TANOUE (R2= 0.9929), while RS4;11 displayed a comparatively
lower correlation (R2= 0.5977) (Supplementary Fig. 5a). This
suggests that the model expects some differences in gene
expression between sensitive and resistant cell lines. This is also
evident by the fact that TANOUE and other sensitive cell lines
displayed a moderate correlation (Supplementary Fig. 5b).

However, the model could efficiently detect sensitive cells even
though there was a moderate correlation between them
(Supplementary Fig. 5c).

Dexamethasone sensitivity prediction in ALL patients using
the deep learning model
We used the ALL patient dataset from the TARGET database to
predict dexamethasone sensitivity. The gene signature (500
genes) from 205 ALL patients was used to predict dexamethasone
sensitivity. The model predicted 96 patient samples as dex-
amethasone sensitive and 109 samples as dexamethasone-
resistant (Fig. 4a). Because dexamethasone sensitivity can predict
patient survival37–39, we then compared event-free survival
between the dexamethasone-sensitive and -resistant groups. We
observed that the dexamethasone resistant group had signifi-
cantly (p= 0.0098) reduced event-free survival (Fig. 4b). The
TARGET ALL dataset contains samples that have been classified as
those obtained from bone marrow and peripheral blood. Thus, we
further determined the difference in event-free survival by
dividing the patients into bone marrow and peripheral blood
groups. Interestingly, a significant survival difference was
observed in the bone marrow group (Fig. 4c), but not in the
peripheral blood group (Fig. 4d). However, this observation must
be interpreted carefully, as the peripheral blood group contains a
smaller number of patients.

The dexamethasone-resistant ALL patient group displays
similar pathway enrichment as the glucocorticoid-treated cells
Next, we compared gene signatures between the predicted
dexamethasone-sensitive and -resistant patient groups. We used
ALL samples from bone marrow to identify pathway enrichment.
Epithelial–mesenchymal transition (EMT) was found to be highly
enriched in samples from dexamethasone-resistant patients (Fig.
5a), which was similar to that of dexamethasone-treated SUP-B15
cells (Fig. 1d). Several other interesting pathways that were
enriched included PTEN-DN, β-catenin, TGF-β, and WNT upregula-
tion signatures (Fig. 5b). Similar pathways were found to be
enriched in dexamethasone-resistant ALL cell lines (Supplemen-
tary Fig. 6a, b). Further, we observed the downregulation of
several genes including FLT3, BCL2, SOCS2, etc. in samples from
dexamethasone-resistant ALL patients (Fig. 5c). Additionally,
enrichment of the KEGG Cytokine-Cytokine Receptor Interaction
gene signature was observed in samples from dexamethasone-
resistant ALL patients (Fig. 5d), which is in line with the
observation that SOCS2 expression is downregulated as SOCS
family members act as negative regulators of cytokine receptor
signaling40. To verify the observation that several genes were
downregulated in samples from dexamethasone-resistant ALL
patients, we compared the expression of FLT3 and SOCS2 in
dexamethasone-sensitive SUP-B15 and -resistant TANOUE cells.
Data are in line with the findings from patient samples, in that
FLT3 (Fig. 5e) and SOCS2 (Fig. 5f) were downregulated in TANOUE
cells. Although we observed that FLT3 expression was down-
regulated in predicted dexamethasone-resistant ALL patient
samples, in vitro development of dexamethasone resistance in
cell lines using long-term culture retained FLT3 expression in
resistant cells and even selected for oncogenic FLT3 mutations5.
Therefore, it is likely that the loss of FLT3 expression occurs in a
portion of ALL patients and might not be a common feature for all
dexamethasone-resistant ALL samples.

Several kinase inhibitors display synergy with dexamethasone
in dexamethasone-resistant cells
Next, we sought to identify drugs that can overcome dexametha-
sone resistance. We attempted to develop a method for predicting
synergy between dexamethasone and other drugs. For this, we
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used drug synergy data from the DrugComb database. We used
488 chemical descriptors to describe each drug and the 500-gene
signature to describe each cell line. Data were normalized before
being introduced to the deep learning model. Because we had a
limited number of cell lines and drug combinations, we used
binary classification such that, for drug combinations, a BLISS
score >3 was considered synergy (defined as 1), and a BLISS score
<2 was considered no synergy (defined as 0; Fig. 6a). Therefore,
the model was trained only for the absence or presence of

synergy. We were able to build a model with 82.4% test accuracy
(correlation coefficient= 0.64; Fig. 6b). The deep learning model
achieved a moderate level of prediction accuracy (Fig. 6c). Further,
to predict synergy, we used 1454 kinase inhibitors and 40 ALL
patient samples from the TARGET dataset. The model predicted
synergy between dexamethasone and 226 inhibitors that inhibit
kinases involved in regulating apoptosis, the cell cycle, JAK/STAT,
MAPK, NFκ-B, PI3K/mTOR, Stem cells/WNT, and PKC/TGFβ/SMAD
pathways (Fig. 6d). Because we used a relatively small amount of

a
SUP-B15

9 samples

7.1045 6.8036 7.9267 7. 2883 8. 3804 6. 8156 4. 7937 7.4253 7.0229 7. 562 7.4826 4. 6459 7. 6792 5. 8962 5. 7176 7.8646 5.0615 4.5422 7.0957 5. 3132 7. 4558 7. 4066 4.7239

4.3118 4.2407 4.1242 3. 9557 4.924 4. 7943 4. 4007 4.2998 4.2722 4.4619 4.51 5. 1424 4. 4471 4. 1531 4. 3016 4.3911 4.7555 4.3484 4.4547 4. 7317 4. 5259 3. 9165 4.5491

11.623 10.689 10.759 10.599 10. 869 8.945 10.26 11. 534 11.495 10.762 9.2136 11.187 4. 3937 10. 984 11. 047 7.2427 10.351 11.297 11.163 11.383 12. 387 12. 566 9.8118

4.5613 4.4014 4.6288 4. 6252 6. 4908 4. 8519 4. 4848 4.5594 4.4798 7.6185 7.6583 7. 8632 4. 3198 6. 1727 4. 3173 4.3232 8. 074 7. 197 8.1939 8. 5051 4. 4448 8. 2395 7.9582

5. 807 5.0637 6.9797 6. 0856 5. 5515 4. 9922 5. 5143 4.6204 7.9521 6.0786 6.3109 7. 1382 6. 5664 6. 6684 4. 6969 4.3737 4.6067 6.2828 7.3251 6. 6163 6. 1815 7. 0167 5.1127

6.3887 5.7243 5.2928 5. 9684 5. 3542 5. 3173 5. 4663 5.3846 5.4235 5.5014 5.9954 5. 7772 5. 7943 5. 3605 5. 6869 5.1204 6.6104 6.4554 5.1465 6. 7153 5. 4647 5. 7141 6.0932

9.6645 9.6344 9. 733 8. 6469 9. 7521 8. 9611 9. 4817 9. 614 9.5294 9.5423 9. 806 8. 6033 10. 174 8. 7383 9. 1517 9. 451 8.6378 8. 933 9.9126 8. 6381 9. 4842 9. 9207 8.8756

4.1167 3.7791 4.0528 3. 9851 4.136 4. 1814 3. 7499 3.7692 3. 899 3.9649 4.0339 3. 9025 3.701 4. 0448 3. 7684 4.0432 3.9979 3.9973 3.7153 3. 7599 3. 7747 3. 7612 3.7499

3.7567 3.6589 3.8643 3. 7151 3. 7823 3. 8877 3. 9512 3.6862 4.4559 3. 618 4. 274 3. 8548 3. 6346 7. 6369 3. 6765 3.8488 3. 751 3.5977 3.7626 4. 0977 3. 6427 5. 0695 3.9686

4.8141 4.3307 4.7705 4. 9953 5. 0123 4. 8018 5. 8157 4.4458 5.2542 4.5171 4.5239 4. 7492 5. 2895 4. 3944 4. 7186 4.7079 4.8508 4.9744 4.3163 4. 7252 4. 7365 4. 5988 4.6951

3.9183 4.2529 4.1707 4. 1291 4.329 4. 1313 4. 2429 4.1777 4.3106 4.4079 4.1143 4. 5044 4. 2397 4. 2038 4. 7171 3.9245 4. 133 3.9147 4.2759 4. 6319 5. 2884 4. 2512 4.6519

5.7173 4.8425 5. 197 4. 9501 4. 6135 4. 7308 6. 7148 5.3781 5.4206 4.9635 5.8687 4. 4022 4. 4483 5.612 5. 8892 5.0155 4.3496 4.3403 4. 894 5. 4211 4. 91 5. 0932 4.3789

7.9126 7.8728 7.8423 8. 1105 8. 4639 7. 2627 7. 8777 7. 505 8.0953 7.2326 7.9645 8. 1973 8. 4645 8. 2611 8. 1163 8. 799 8.1091 8.1118 7.1725 8.069 8. 7641 8. 0834 7.894

9.8423 10.495 10.281 10.043 9. 6925 10. 472 10.32 10. 225 10. 16 9.9143 9.8212 9. 4768 8. 9426 9. 7692 10. 051 10. 263 10. 25 10.096 10.185 9. 5889 8. 6963 9. 8334 10. 506

7. 059 4.4031 4.3454 4. 5937 9. 2153 9. 9516 9. 3088 6.2552 4.0192 6.3459 5.3738 10.466 10.06 9. 7779 7. 5939 9.3933 9.8278 11.052 7. 548 9. 2133 8. 5284 8. 2789 9.0541

4. 173 4. 063 4.1168 7. 0563 4. 3651 6. 2779 4. 0234 4.0916 4.0321 4.1669 4.1912 3. 8519 3. 9942 6. 5354 4. 0208 4.2589 4.2529 3.8862 3.8997 4. 1883 4. 1121 3. 9949 4.0416

8.4714 9.2141 8.9915 9. 0409 8. 7699 8. 8211 8. 3096 9.7631 9.5627 9.3338 9.0293 8. 8979 8. 5995 8. 6879 9. 0326 8.6965 9.2088 8. 292 9.6742 9. 0274 8.932 9. 0984 8.8506

12.263 11.225 12.015 11.632 10. 607 12. 262 11. 295 11.75 12.464 11.579 11.927 10.936 9. 8074 11. 692 11. 667 11. 591 10.579 11.365 11. 35 11.205 10. 912 11. 903 12. 412

6.1626 5.6007 5.9418 5. 6744 5. 7918 6. 8901 5. 6966 5. 531 5.9302 5.4833 6.0609 5. 9678 5. 5034 5. 5617 5. 5993 5.6466 6.8944 5.4291 6.3824 5. 8088 6. 4026 5. 4884 6.0964

8. 124 8.0296 8.2951 8. 3889 10. 086 8. 7933 10. 211 8.0178 7. 914 7.9548 8.6494 8. 2849 8. 8535 9. 3853 9. 3438 10. 284 8.3403 9.0506 7.9444 9.072 8. 3775 8.724 9.1207

6.3518 6.9057 6.4795 6.532 6. 1923 5. 9754 6. 3298 6.8348 6.3625 6.7434 6.1879 6. 6916 7. 3053 6. 5556 7.136 7.4934 6.7028 5.7244 6.4609 6. 9765 7. 4205 7. 0711 7.0339

5.4571 5.2851 4.8804 4. 6307 9. 8167 5. 8915 5.273 8.6811 5.7692 7.8559 5. 022 5. 4514 4. 8946 5. 7803 5. 7145 5.6376 5.2386 5.2986 5.1181 5. 2226 5. 2388 5. 2071 5.2493

9.0468 8.3839 8.2668 9.234 8. 4926 8. 3971 10.23 7.4263 8.5992 8.3389 9.3065 8. 8827 9.213 9. 1146 8. 5678 8.7106 9.0062 9.2547 8.0555 9. 3576 8.915 8. 5692 8.9946

7.6801 6.3977 8.1442 5. 8795 7. 8105 9. 9102 7. 6879 8.1504 4.6886 4.8136 6.0052 6. 1455 7. 5706 9. 8322 5. 9674 7.6905 4.2372 5.3972 6.2066 6. 8502 9. 6133 9. 0766 7.2245

3.4996 3.4067 4.2367 4. 5054 3. 6764 3. 5209 3.492 3.5593 3.6286 3.4055 3.5282 3. 4322 3. 3887 3. 5108 3. 2642 3.6526 3.3334 3.4929 3.3598 3. 4734 3. 4908 3. 4745 3.6136

5. 164 4. 765 4.8686 5. 1863 5. 2374 4. 8273 4. 8763 4.8349 5.0723 4.7611 5.1678 4. 5433 5. 3809 6. 1314 5. 3922 5.5644 4.9473 4.7678 4.5481 5. 1934 5. 3321 4. 6521 4.7433

3.7419 3.9231 3.6238 3. 8327 4. 0348 3. 7534 3. 7474 3.8584 3.8745 3.6546 3.6242 3. 9612 3. 66 3. 5739 3.681 4.0388 3.9275 3.9903 3.7094 3. 8425 3. 8709 3. 5709 3.7994

3.8754 3.9891 4.0796 4. 0227 3. 8495 3. 8717 5. 6198 3.8451 3.8269 4.0848 3.9579 4. 1308 3. 9487 4. 1941 4. 2053 3.7591 4.0037 3.8701 3. 881 4. 0986 3. 99 3. 8793 4.1665

5. 498 4.8267 4.5961 5.495 5. 0184 5. 1689 4. 8256 4. 728 4.5253 4. 955 4.8482 4. 9261 4. 9024 4. 6676 5. 1693 5.1076 5.0377 5.1337 4.5241 4. 8961 4. 9858 4.873 4.8178

4.3048 4.4314 4.4182 4. 3242 4. 6898 4. 4895 4. 3084 4.2988 4.6071 4.1839 4.1719 4. 1927 4. 5295 4. 2181 4. 3159 4.2526 4.6922 4.3501 4.0829 4. 1364 4. 5777 4. 2124 4.3147

6.0535 5.4089 5.1947 5. 5984 5. 4666 5. 8241 5. 1053 5.1644 5.2612 5.8716 5.6075 5. 9706 5. 6756 5. 5543 5. 1829 5.7797 5.5607 6.0473 5.3105 6. 5851 5. 4207 4. 9992 5.3624

3.5826 3.8118 3.9069 3. 9532 3. 4141 3. 5014 3. 5505 3.5989 3.6784 3.5376 3.9698 3. 6909 3. 6754 3. 5643 3. 6801 3.6528 3.4806 3.8003 3.6308 3. 7229 3. 9119 3. 6284 3.7369

3.4463 3.4776 3.5905 3. 4012 3. 4435 3. 5169 3. 6041 3.4686 3.5254 3.7119 3.6068 3. 7775 3. 5019 3. 5524 3. 3916 3.6809 3.5952 3.6536 3.3619 3. 6925 3. 6434 3. 2556 3.419

7.7508 4. 509 6.2958 4. 7473 4. 3748 4. 4278 9. 2526 4.2847 4. 258 8.9176 8.8999 9. 2227 9. 5884 9. 8065 4. 8811 4.3151 4.4745 4.8093 7.3204 9. 1476 9. 0941 10. 278 5.8737

3.8401 4.0086 4.3607 3. 9105 4. 1445 4. 6627 3. 8117 3.8872 3. 979 3.74 3.9026 3. 8088 3. 9649 3. 6082 3. 8479 4.4016 3.9283 3.7369 3.5956 4. 0576 4. 1475 4. 1559 3.9287

5.4216 5.5034 4.8354 5. 3348 5. 4256 4. 2859 5. 2586 5.7599 5.5823 5.1276 4.9888 5. 3376 5. 1457 4. 9009 5. 1946 4.6942 5.8422 5.3795 4. 569 5. 6435 5. 7852 5. 5962 5.439

4.2639 4.0096 4.6137 4. 5068 5. 0071 4. 8853 4. 3939 4.2539 4.1996 4.4674 4.6286 4. 6236 4. 3727 4. 1721 4. 4387 5.1159 9. 309 4.3376 4.1881 4.353 4. 1343 4. 3853 8.828

4.8246 3.6944 3.7296 3. 9303 4. 1082 4. 4965 3. 8942 3.6799 3.9421 3.7224 3. 841 3. 9969 3. 7693 3. 8691 3. 6516 4.1935 4.0112 4.0796 4.4423 3. 8724 4.147 3. 6322 3.5096

4.1253 4.1609 4.0017 4. 1214 4. 4042 4. 1951 4. 2438 4.0953 4.2753 4.6966 4.2085 4. 4783 3. 7575 3.952 4. 2671 4. 095 4.3375 4.3415 3.9342 4. 3963 4.252 4. 1774 4.5243

3.3054 3.2365 3.4322 3. 7926 3. 5602 4. 0348 3. 2453 3.2413 3.4958 3.2913 3.4422 3. 2971 3. 2098 3. 5586 3. 2773 3.5942 3.3749 3.5488 3.3598 3. 4436 3. 4111 3. 2999 3.3462

4. 681 4.3303 4.4918 4. 3448 4. 7126 4. 3587 3. 98 4.2455 4.8262 4.3369 4.3872 4. 1996 4. 3769 4.451 4. 2542 4. 875 4.8876 4.5606 4.1805 4. 6515 4. 2573 4. 3866 4.4506

3.5187 3.7066 3.6408 3. 6856 3. 4991 3. 6447 3. 6252 3.6243 3.5271 3.6119 3.4945 3. 6936 3. 4466 3. 4251 3. 4203 3.7271 3.5798 3.6306 3. 388 3. 5582 3. 4518 3. 4771 3.3919

7.7826 7.2537 6.1952 7. 5724 6. 3999 5. 8026 5. 3993 7.6802 4.9809 7.2572 7.9672 6. 6352 5. 9492 6. 7311 6. 11 6.8033 6.1987 6.7743 7.6954 6. 4984 7. 2287 7.035 6.8849

3.8083 3.7869 4.1706 3. 7839 4. 1781 3. 9882 3. 8373 3. 835 3.7501 3. 806 3.9424 4. 0009 4. 0302 3. 7227 3. 9311 4. 668 3.83 4.0049 3.6593 4. 0018 3.889 3. 7623 3.8723

4.3317 4. 753 4.2944 4. 4227 5. 1144 4.722 4. 6533 6.1354 4.6605 3.9563 4.7107 9. 7078 10. 921 4. 9677 4. 3585 5.2411 8.6315 4.6882 4.4144 8. 2461 3. 7651 3. 9943 5.0543

4. 837 5.6547 3.7789 3.84 3. 6143 3. 8091 3. 6569 5.3303 3.6295 4.6435 4.3811 3. 5915 3. 9367 3. 6573 4. 1498 3.8003 3.4935 3. 704 4.9137 3.187 6. 1577 5. 7531 4.0046

4.6329 4.7603 4.5209 4. 6405 4.759 4. 4091 4.537 4.6602 4.6079 4.4606 4.6936 4. 4629 4. 2626 4. 8567 4. 6771 4.7095 4.7291 4.9058 4.1381 4. 6525 4.579 4. 3479 4.4012

6. 937 6. 911 6.7684 6. 6693 6.722 5. 9691 6. 7597 6.6158 7.3267 6.8826 6.5481 6. 9214 6. 5583 6. 4879 6. 0239 6.9032 6.0709 6.6191 5.9466 6. 5382 6. 5179 6.418 6.7608

6.35 6.6199 6.3792 7. 0788 5. 5971 6. 9178 4. 6325 6.9523 4.8167 6. 486 6.2443 7. 0409 7. 0831 5. 5612 5. 9729 7.0519 5.6681 5.5244 6.5467 5. 7252 5.913 6. 2517 4.9263

4.0239 4.0949 4.2084 3. 9145 4. 3172 4. 3929 4. 2612 4.1765 4.7523 4.4873 4.2088 4. 1044 4. 0749 4. 2197 4. 0021 3.7744 4.3206 4.0168 4.1665 4. 4348 4.068 4. 3171 4.3921

TARGET

205 samples

4.962266 5.496049 7.390905 7.384995 5.842099 6.471313 5.892537 6.444248 7.062538 5.704079 5.217353 7.053355 6.475731 7.062844 5.905683 6.182929 6.776262 6.664483 6.490469 6.427339 6.777066 5.449178 5.969378 6.724003 6.360449 5.76378 6.941266 6.530368

6.366588 4.601655 5.011871 5.205585 4.78089 3.976876 4.129963 5.034856 5.381707 5.236166 5.031393 6.110261 4.710959 5.142083 5.57029 5.069993 5.011887 5.040003 5.515817 6.159665 4.378878 5.573356 5.175855 5.663197 5.345016 4.596672 4.803641 4.22253

3.04495 3.523 3.125356 3.206171 3.030879 3.558882 3.684911 2.912247 2.915242 4.202212 2.812566 3.141418 3.379704 3.313725 2.796106 3.101136 3.286911 3.05431 2.766369 3.09937 2.862117 3.920448 3.266078 3.42324 3.338541 3.194318 3.022045 3.174083

5.140967 5.303621 5.82934 5.550757 5.202031 6.921736 6.598661 5.377669 5.523879 5.762384 5.157605 5.171587 5.625607 5.71603 5.323492 5.718694 5.988764 5.01965 4.933329 5.19337 5.811981 5.403444 5.712669 5.80128 5.8088 5.888597 5.341901 5.824795

2.554642 2.846479 2.593315 2.636569 2.661861 2.778894 3.143265 2.627435 2.612226 2.780144 2.67512 2.6732 2.673126 2.702776 2.66356 2.693659 2.702862 2.581327 2.622279 2.470423 2.822701 2.678088 2.523595 2.781962 2.980529 2.749078 2.677031 2.828663

7.45377 6.579768 7.642406 6.55584 7.100583 5.732162 5.444057 6.419515 6.73624 6.411252 7.102173 8.412145 6.813035 7.580988 6.775901 7.039682 6.951032 7.109328 6.23991 7.746985 6.906531 7.404046 6.755989 7.612718 6.430514 6.430788 7.405714 6.425846

3.327709 3.49147 3.440642 3.704001 3.356744 3.934175 4.026879 3.19314 3.499908 4.113081 3.500797 3.299175 3.569005 3.596159 3.536264 3.902697 3.717741 3.528061 3.147004 3.493369 3.541512 3.442057 3.670137 3.562302 3.587251 3.616655 3.463893 3.944659

3.274916 3.154357 3.10298 3.016202 3.371606 3.585458 3.347684 3.111011 3.047693 3.755288 2.998427 3.167709 3.214266 3.216792 3.096885 3.048577 3.190392 3.032251 3.078544 3.230024 2.841486 3.051434 3.1852 3.219178 3.226874 3.300607 3.121109 3.266039

6.648789 3.473454 4.781245 2.59319 3.371825 2.935971 3.408514 4.23789 4.874352 2.788488 3.424802 3.16835 3.101944 3.40917 3.650985 3.103922 2.636173 2.847774 3.124163 4.156691 2.929181 3.442627 2.766817 4.389604 2.704605 2.625716 3.134978 3.094915

2.717853 2.796219 2.933841 2.77835 2.926863 2.798398 2.780444 2.776618 2.877759 2.858696 2.645308 2.734573 2.825955 2.91792 2.952681 2.787048 2.855292 2.840435 2.803073 2.74263 2.728347 2.653861 2.862062 2.6571 2.902475 2.915989 3.192878 2.751014

3.294846 3.110115 3.393367 3.364668 3.266038 3.245427 3.331404 3.217426 3.262173 3.609811 3.275464 3.163101 3.337283 3.247562 3.096581 3.248057 3.304066 3.075972 3.234429 3.27358 3.158696 3.362409 3.49917 3.248824 3.555056 3.263762 3.44865 3.184718

4.443083 4.384287 4.493744 4.344795 4.211759 4.391937 4.260103 4.295547 4.277621 4.484783 4.735389 4.417066 4.374793 4.499134 4.106324 4.409816 4.168375 4.226266 4.109906 4.248976 4.164953 4.620458 4.030147 4.318091 4.390517 4.068924 4.502515 4.188835

3.690213 3.652183 3.647928 3.664044 3.758452 3.972285 4.252696 3.578092 3.6097 3.859571 3.741224 3.570512 3.725177 3.716238 3.607801 3.7787 3.911196 3.556018 3.424829 3.539329 3.733154 3.494192 3.639869 3.450127 3.774593 4.270598 3.617523 3.91894

6.560036 6.304478 6.796744 6.683973 5.417156 5.634673 5.788019 4.689195 6.134002 6.093253 5.028299 7.352489 5.967728 6.886746 6.549418 5.826545 5.993345 6.237312 6.161873 6.888692 5.984032 5.392062 6.699239 7.227452 5.804099 7.423059 6.674599 6.72251

5.645838 3.30564 4.277017 3.790933 3.478091 3.495029 4.759184 2.991302 3.558124 3.51553 3.319772 4.061367 4.174832 4.421335 3.615483 4.077472 3.271558 3.617034 4.08911 4.415525 4.006516 4.080279 4.221434 4.112956 4.127542 3.249222 3.725645 3.579089

3.071705 3.262991 3.052413 3.061291 3.387486 3.374901 3.633597 3.269655 3.498352 3.21824 3.313738 3.013373 3.450233 3.242665 3.24504 3.625603 3.206576 3.056161 2.816182 3.034378 3.370386 2.962308 3.158909 3.187486 3.417557 3.553714 3.528681 3.69926

3.445777 3.048319 3.435181 3.492242 3.337782 3.993392 3.478695 3.29374 3.304174 4.907913 3.090338 3.313205 3.46003 3.379774 3.252938 3.291878 3.48395 3.222723 3.187753 3.46598 3.409312 3.476915 3.517294 3.464745 3.704209 3.570093 3.270526 3.429753

4.480082 3.154327 3.790449 3.713656 4.050282 3.191856 2.801503 3.410098 3.288767 2.809947 3.492593 4.646204 3.255441 3.262421 3.973129 4.203942 3.194362 3.39927 3.08993 4.880378 3.709592 3.997845 4.098811 3.693619 3.162921 3.169904 3.489381 3.019332

6.723762 5.437229 6.089011 5.69663 5.678913 4.809173 5.249387 5.308392 5.43132 5.032548 5.760124 6.507622 4.998059 5.231431 5.347287 5.541752 5.229084 6.04981 5.678303 6.638103 5.426147 6.159132 6.175904 5.635375 5.150334 5.023016 5.283744 4.771617

2.634137 2.735897 2.80098 2.756885 2.788657 3.631217 3.157315 2.836105 2.888388 2.976543 2.553332 2.873346 3.111048 2.713864 2.84434 2.885398 2.970892 2.583272 2.695384 2.680156 2.544062 2.613984 2.83722 3.092796 2.753182 3.060874 2.730044 3.032397

2.501462 2.690243 2.788682 2.60847 2.689867 2.821082 3.059595 2.845191 2.87672 3.014369 2.691093 2.775124 2.75296 2.552314 2.50648 2.661581 2.726832 2.757596 2.651827 2.613749 2.808493 2.56309 2.659285 2.66246 2.679347 2.827496 2.806135 2.827071

3.610495 3.775018 3.727513 3.809009 3.622038 4.083859 4.258317 3.506126 3.714706 4.55836 3.615167 3.711259 4.028075 3.814476 3.338055 4.110964 3.801166 3.830309 3.50908 3.556052 3.563217 3.704349 3.784059 3.579897 3.804191 3.844813 3.844989 3.838303

3.567535 3.483045 3.487935 3.351059 3.487444 3.448261 4.186926 3.272183 3.538953 4.401544 3.414644 3.461146 3.330508 3.487493 3.397911 3.488642 3.431391 3.391177 3.532873 3.402533 3.413859 3.41374 3.650988 3.510673 3.453458 3.430218 3.802751 3.566991

6.597425 6.331766 7.160222 6.305993 5.324202 4.929797 5.050385 5.434705 6.972046 3.55883 7.019502 6.617454 5.25691 5.375893 7.141585 5.969572 6.16392 5.734003 6.958791 7.326789 5.034802 5.994206 6.775095 5.897751 5.895204 4.881444 5.810855 4.683116

6.433156 5.503032 6.838887 4.847226 5.636753 3.921469 3.842158 5.206763 7.088857 3.630466 6.755669 6.388309 5.654489 5.165848 7.147025 5.495691 6.524445 4.995391 6.282305 7.421548 4.333613 5.433581 6.402626 6.048034 5.395388 3.590141 5.707611 3.944967

3.759121 3.821968 3.844206 3.917211 3.723271 4.113761 4.406469 3.886263 3.569274 4.349499 3.946307 3.688818 3.848528 4.08383 3.805238 3.630054 4.101499 3.898432 3.634694 4.052798 3.644653 3.715662 3.993271 3.886731 3.888295 4.292526 3.780989 4.070416
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Fig. 3 Dexamethasone sensitivity prediction model. a Deregulated gene signatures from dexamethasone- and prednisolone-treated SUP-
B15 cells were combined with genes displaying the highest level of variation in CCLE and TARGET (ALL) datasets and 500 genes were selected.
The 500 genes from 138 cell lines of hematological malignancies were used to build a deep learning model. The model was tested using
three sets of samples. b Confusion matrix for all three groups of samples. c The performance of the model was calculated using three test
sample groups.
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data to build and test the model, it may display poor prediction
performance. To verify the synergy between dexamethasone and
these kinase inhibitors, we used 38 kinase inhibitors from those
groups in combination with dexamethasone to analyze synergy in
the dexamethasone-resistant TANOUE cell line. We observed that
several, but not all, kinase inhibitors displayed synergy with
dexamethasone in TANOUE cells (Supplementary Fig. 7 and Fig.
6e). Inhibitors displaying higher synergy scores include Aurora
kinase, JAK, mTOR, and S6K inhibitors (Fig. 6e). Several of these
kinases are known to be involved in β-catenin stabiliza-
tion23,25,29,41–45, therefore, we tested whether β-catenin inhibition
synergizes with dexamethasone. We observed that several
inhibitors targeting β-catenin activity display synergy with
dexamethasone in TANOUE cells (Fig. 6f).

DISCUSSION
Glucocorticoids form the cornerstone of drugs in the chemother-
apeutic regimen cocktail for the treatment of ALL and serve as one
of the strongest predictors of relapse in ALL46. However, the
molecular mechanisms that contribute to glucocorticoid resis-
tance and relapse in ALL are quite divergent, and also remain
poorly understood46,47. In this study, we used transcriptomic and
peptide substrate-based kinase profiling, which was supplemen-
ted with the deep learning method to define deregulated cellular
signaling pathways in dexamethasone-resistant ALL. We observed
that dexamethasone resistance is mediated through the activation
of multiple parallel signaling pathways.
Six hours of dexamethasone treatment induced a gene

signature mimicking the loss of PTEN function (Fig. 1d), which
suggests that dexamethasone treatment might release a negative
feedback loop on PI3K signaling. Additionally, TGF-β pathway

enrichment (Fig. 1d) is linked to the PTEN suppression pheno-
type48. Enrichment of those pathways were also present in
prednisolone-treated cells (Fig. 1e) and in patient samples
predicted to be dexamethasone-resistant (Fig. 5b). Furthermore,
peptide substrate-based kinase profiling (Fig. 2b) and western blot
using a phospho-specific antibody (Fig. 2g) showed upregulation
of S6K activity probably related to the activation of the PI3K/mTOR
pathway. The PI3K pathway plays a role in dexamethasone
resistance in acute lymphoblastic leukemia and inhibition of AKT
or mTOR reverses dexamethasone resistance49,50. However,
dexamethasone treatment inhibited AKT phosphorylation (Fig.
2h) and we have not seen an enrichment of the PI3K/mTOR gene
signature in GSEA raising the possibility that S6K activation may
be mediated by an alternative pathway. For example, Aurora
kinase activation is linked to the activation of S6K43.
Another interesting pathway that was enriched is involved in

epithelial-mesenchymal transition (Figs. 1d, e and 5a). In this
process, epithelial markers are downregulated while mesenchymal
markers get upregulated, a typical feature found in embryogen-
esis, organ development, and predominantly epithelial cancer51,52.
Several EMT-related transcription factors are also known to be
expressed in hematological cancers and thereby modulate cell
proliferation, viability, stemness, and drug resistance53. It has been
shown that dexamethasone favored EMT and cancer progression
in pancreatic cancer54. Aurora kinase activity has been linked to
EMT in several epithelial cancers55–57. Our kinase activity profiling
data suggest a strong activation of Aurora kinase activity in
dexamethasone-treated cells (Fig. 2b), linking to the enrichment of
EMT markers. The role of other cell cycle regulatory kinases such
as PLK family proteins in EMT has been poorly studied. Studies
suggest a role of PLK1 in EMT while the role of other family
members in EMT, such as PLK2 and PLK3, remains relatively

a b
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Fig. 4 Dexamethasone sensitivity prediction in ALL patient samples. The TARGET dataset for ALL was used to predict dexamethasone
sensitivity. a In total 205 patient samples were used to predict dexamethasone sensitivity by the deep learning model. b Event-free survival
between dexamethasone-sensitive and -resistant groups using 205 ALL patient samples was determined by GraphPad Prism. c Event-free
survival for ALL patient samples collected from bone marrow. d Event-free survival for ALL patient samples collected from peripheral blood.
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unknown58. However, a link has been established between PLK2
expression and Cyclin E stabilization where PLK2 induces FBXW7
degradation59. FBXW7 binds to cyclin E and directs it for
proteolytic degradation60. Finally, enrichment of WNT and
its canonical effector, the β-catenin pathway (Fig. 5b), also
links to EMT61.
Enrichment of cytokine and cytokine receptor signaling

pathways was observed in patient materials predicted to be
dexamethasone-resistant (Fig. 5d). This is probably because
SOCS2 expression was downregulated in dexamethasone-
resistant ALL patient samples (Fig. 5c), which was also evident
in a dexamethasone-resistant cell line (Fig. 5f). SOCS2 belongs to
the suppressor of the cytokine signaling family of proteins and
acts as a negative regulator of cytokine signaling40. In silico
identification of synergy between dexamethasone and kinase
inhibitors provides additional support to the activation of distinct
signaling pathways (Fig. 6d). Furthermore, the in vitro drug
synergy experiment to follow up in silico data is in line
with the fact that inhibition of JAK, mTOR, S6K, and cell cycle
regulatory kinases including Aurora kinases, displays a synergistic
effect with dexamethasone in a dexamethasone-resistant cell
line (Fig. 6e).
While combining all the data, we observed that enrichment of

the β-catenin upregulation signature is common within all four
GSEAs (Figs. 1d, e and 5b, and Supplementary Fig. 6b), suggesting
a link between dexamethasone resistance and transcriptional
activation of β-catenin target genes. β-catenin activity is regulated
by stabilization of its protein levels through inactivation of the

destruction complex (AXIN/APC/CK1/GSK-3β) that phosphorylates
β-catenin, resulting in ubiquitin-mediated degradation22. Aurora
kinases play important roles in the inactivation of the destruction
complex by inducing phosphorylation-dependent inactivation of
GSK-3β. This process can take place via several different
mechanisms. GSK-3β is a substrate of Aurora kinase23. It can also
directly or indirectly activate JAK241, p3842, and S6K43,44. While
inhibition of JAK2 activity suppressed β-catenin accumulation45,
S6K29, and p3825 directly phosphorylate GSK-3β and negatively
regulate its activity. We also observed that inhibitors targeting
Aurora kinases, JAK, mTOR, and S6K display synergy with
dexamethasone (Fig. 6e), further suggesting that Aurora kinase
activity may be involved in dexamethasone resistance. A link
between Aurora kinase activity and dexamethasone sensitivity
was described where the pharmacological inhibition of Aurora
kinase enhanced dexamethasone-induced expression of cell
death genes62.
Collectively, our data suggest that stabilization of β-catenin

through phosphorylation-dependent inactivation of GSK-3β likely
by Aurora kinases and their direct or indirect downstream
effectors such as JAK, mTOR, p38, and S6K may contribute to
dexamethasone resistance (Supplementary Fig. 8). These kinases
are possibly activated during the initial exposure to dexametha-
sone that may be contributed to dexamethasone-resistant
leukemia patients. Finally, drugs targeting these kinases and their
possible downstream effector β-catenin can partially restore
dexamethasone sensitivity.
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Fig. 5 Pathway enrichment in dexamethasone-resistant ALL patient samples. Pathway enrichment in dexamethasone-resistant ALL patient
samples was analyzed using GSEA. a Hallmarks and b Oncogenic signatures gene sets were used for pathway enrichment analysis. c
Upregulated and downregulated genes in dexamethasone-resistant ALL patient samples were determined by SAM. The bar graph shows
selected top-listed genes. All the upregulated and downregulated genes are included in supplementary table T2. d The enrichment of KEGG
cytokine and cytokine receptor interaction pathway in dexamethasone-resistant ALL patient samples was determined by GSEA. e, f SUP-B15
and TANOUE cells were lysed. Lysates were analyzed by SDS-PAGE and western blotting using specific antibodies as labeled. Blots shown in
each panel were from the same experiment and processed similarly.
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METHOD
Gene expression analysis
ALL cell lines SUP-B15, JURKAT, MOLT-4, and CCRF-CEM were treated with
1 µM dexamethasone or 2 µM prednisolone for 6 h before lysis. All cell lines
were collected from DSMZ (Braunschweig, Germany). Cells were main-
tained in the recommended medium by DSMZ and were regularly tested
for mycoplasma contamination. Total RNA was extracted using the RNeasy
mini kit (Qiagen) and the quality of total RNA was checked by Bioanalyzer.
Affymetrix Human Gene 2.0 ST Array was used for expression analysis. Raw
data were processed for robust multi-array average (RMA) normalization.
Significance Analysis of Microarrays (SAM) was used to identify the
deregulated genes16, with the SAMR version developed by Michael Seo
being used63. A maximum false discovery rate (FDR) cut-off of 5% was used

to define significantly deregulated genes. Gene Set Enrichment Analysis
(GSEA) software64 (Broad Institute) with the gene sets database MSigDB
v7.0 (Hallmarks and Oncogenic signatures) was used for pathway
enrichment analysis. ALL patient data were downloaded from the TARGET
database63. CCLE cell line data were collected from GSE3613365.

Peptide substrate-based kinase profiling
Kinase activity in dexamethasone-treated SUP-B15 cells was measured
using the peptide substrate-based kinase profiling (Pamgene, ‘s-Herto-
genbosch, the Netherlands) method. SUP-B15 cells were treated with 1 µM
dexamethasone for 6 h before lysis. Tyrosine kinase profiling and serine/
threonine kinase profiling were performed separately using standard
protocols provided by the manufacturer.

a
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Fig. 6 The synergy between dexamethasone and kinase inhibitors. a Using the same 500-gene signature and drug synergy data from the
DrugComb database, a deep learning binary classification model was developed to predict synergy between dexamethasone and other
inhibitors. b Model performance was tested using 108 test samples. c Confusion matrix showing the model’s performance using 108 test
samples. d In silico synergy prediction between dexamethasone and 1454 kinase inhibitors using the deep learning model. e In vitro synergy
measurement between dexamethasone and kinase inhibitors in TANOUE cells using Cell Titer Glo after 48 h of incubation with drug
combinations. The figure shows representative kinase inhibitors. f In vitro synergy measurement between dexamethasone and β-catenin
inhibitors in TANOUE cells using Cell Titer Glo after 48 h of incubation with drug combinations.
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Western blot
Cells were lysed in 1% Triton X-100 lysis buffer, supplemented with
protease/phosphatase inhibitors (Na3VO4, Trasylol, and PMSF). The protein
concentration of the total cell lysates was determined by the bicinchoninic
acid (BCA) assay method (ThermoFisher Scientific, USA). The lysates were
then mixed with a 1:1 volume of SDS sample loading buffer, and 10 µg
proteins from each lysate were separated on SDS-PAGE gels; they were
then transferred to polyvinylidene difluoride (PVDF) membranes. The
membranes were immunoblotted with different primary antibodies. The
anti-phospho-ERK1/2 (1:2000), anti-phospho-S6K (1:1000), anti-phospho-
AKT (1:1000), and anti-phospho-p38 (1:2500) antibodies were obtained
from Cell Signaling Technologies, USA. The anti-ERK (1:200), anti-AKT
(1:1000), and anti-β-actin-HRP (1:2000) antibodies were from Santa Cruz
Biotechnology, USA. The anti-β-catenin (1:1000) and anti-p38 (1 µg/ml)
antibodies were from BD Biosciences, USA. The anti-FLT3 (1 µg/ml)66 and
anti-SOCS2 (1 µg/ml)67 antibodies were described previously. The anti-
phospho-serine 9-GSK-3β (1:1000) antibody was from ThermoFisher
Scientific, USA. For immunodetection, the blots were incubated with the
respective horseradish peroxidase-conjugated secondary antibodies and
developed with the Luminata Forte Western HRP Substrate (Millipore) and
Amersham Imager 600 (GE Healthcare, Sweden). Where applicable, all blots
were derived from the same experiment and were processed in parallel.

Deep learning models
To develop the binary classification model, 138 cell lines related to
hematological malignancies were selected from the CCLE database65. The
IC50 value for dexamethasone was used to define sensitivity. Cells with IC50
values <700 nM were classified as sensitive, while cells with IC50 values
>1000 nM were classified as resistant. With these criteria, 108 cell lines
were classified as resistant (defined as 1) and 30 cell lines were classified as
sensitive (defined as 0). Because the number of resistant cell lines was
higher than the number of sensitive cell lines, we used linear combinations
of gene expression for sensitive cell lines to increase the number of
samples in the sensitive cell line group. The sequential model from Keras36

in TensorFlow68 backend was used to develop the deep learning model.
The model was trained using a 500-gene signature after Min-Max
normalization. For prediction, a 500-gene signature from unknown
samples was collected and normalized using Min-Max normalization.
Further, to develop a model that can predict synergy between
dexamethasone and other drugs, we retrieved synergy data from the
DrugComb database69. Considering the amount of data, we used binary
classification to build the prediction model. We applied BLISS score >3 as
synergy (defined as 1) and BLISS score <2 as no synergy (defined as 0). We
used data from 529 combinations (29 cell lines and 23 drugs) following the
classification (263 samples with BLISS score >3 and 266 samples with BLISS
score <2). PyChem70 and DeepChem71 were used to define features for
drugs (total 488 features) and 500-gene signature for cell lines. Data were
normalized twice: first using tanh normalization and then by Min-Max
normalization. The sequential model from Keras in the TensorFlow
backend was used to develop the model. Due to the limited amount of
data available, we used 421 samples as training samples and 108 samples
as validation/test samples. Then we applied this model to predict synergy
between dexamethasone and 1454 kinase inhibitors (information collected
from Selleckchem) for 40 ALL patient data from the TARGET dataset.
Similarly, we used 488 features to describe each kinase inhibitor and a 500-
gene signature for each patient sample for the prediction.

In vitro drug synergy
For in vitro synergy analysis, 38 kinase inhibitors and a negative control
(dinaciclib, predicted as no synergy) were used. A fivefold dilution (10000-
0.128 nM) of the single drugs was used. We used a 1:1 combination of 8
doses for synergy and then used Decrease72 to predict the full
combination (8 × 8). Synergy was calculated using the SynergyFinder
web application73. We applied a similar method (6 doses) to measure
synergy between dexamethasone and β-catenin. Cells were seeded in a
384-well plate and treated with the drug(s) for 48 h. Cell Titer-Glo
(Promega, USA) was used to measure cell viability following the
manufacturer’s protocol.

Cell viability and apoptosis
Cells were seeded in a 96-well plate and treated with the drug or DMSO for
48 h. PrestoBlue (ThermoScientific, USA) was used to measure cell viability

following the manufacturer’s protocol. For apoptosis assay, cells were
seeded in a 24-well plate and treated with the drug or DMSO for different
time points. Apoptotic cells were quantified using the annexin-V/7-AAD kit
(BD Biosciences, USA) following the manufacturer’s protocol.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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