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ABSTRACT
◥

Loss of the RAS GTPase-activating protein (RAS-GAP) NF1
drives aberrant activation of RAS/MEK/ERK signaling and other
effector pathways in the majority of malignant peripheral nerve
sheath tumors (MPNST). These dysregulated pathways represent
potential targets for therapeutic intervention. However, studies of
novel single agents including MEK inhibitors (MEKi) have dem-
onstrated limited efficacy both preclinically and clinically, with little
advancement in overall patient survival. By interrogation of kinome
activity through an unbiased screen and targeted evaluation of
the signaling response to MEK inhibition, we have identified
global activation of upstream receptor tyrosine kinases (RTK)
that converges on activation of RAS as a mechanism to limit
sensitivity to MEK inhibition. As no direct inhibitors of pan-RAS

were available, an inhibitor of the protein tyrosine phosphatase
SHP2, a critical mediator of RAS signal transduction downstream
of multiple RTK, represented an alternate strategy. The combi-
nation of MEKi plus SHP099 was superior to MEKi alone in
models of NF1-MPNST, including those with acquired resistance
to MEKi. Our findings have immediate translational implications
and may inform future clinical trials for patients with MPNST
harboring alterations in NF1.

Significance: Combined inhibition of MEK and SHP2 is
effective in models of NF1-MPNST, both those na€�ve to and
those resistant to MEKi, as well as in the MPNST precursor lesion
plexiform neurofibroma.

Introduction
Malignant peripheral nerve sheath tumors (MPNST) are highly

aggressive and among the most difficult types of soft-tissue sarcoma to
manage. About 50%of these arise in patients withNF1, and the lifetime
risk of developing MPNST in patients with NF1 is about 8% to 13%.
Overall, the prognosis of NF1-MPNST appears to beworse than that of
sporadic tumors (1), and MPNST in patients with NF1 develop at a
significantly younger age than spontaneous MPNST (2). The chal-
lenges associated with treating patients with MPNST include their
relative insensitivity to conventional systemic chemotherapy and
radiotherapy, and their propensity to metastasize. The only known
definitive therapy for MPNST is surgical resection with wide negative
margins, which is often not feasible due to location or size, the
associated morbidity of the surgery, or the presence of distant metas-
tases (3). Despite many trials, there has been little advancement in

overall patient survival, and thus novel therapeutic approaches are
needed.

Underlying the pathogenesis of NF1-mutant cancers, including
MPNST, is loss of function alterations in NF1, encoding a critical
RAS-GAP, and consequently, uncontrolled activation of RAS (4).
Among the well-characterized RAS effector pathways are RAF/
MEK/ERK, PI3K/AKT, and Ral-GDS signaling (5), and of these, ERK
signaling is a critical downstream effector. Data from our laboratory
and others show that MEK inhibitors (MEKi) effectively inhibit ERK
signaling in all tumors and normal cells (6–8). In recent years,
studies testing the pharmacologic inhibition of MEK have been
reported in models of MPNST, including both those that are
NF1-associated and sporadic tumors (9–11). Overall, the preclinical
responses to single-agent MEKi have been limited by incomplete
ERK suppression and short-lived responses at best. ERK activation
causes feedback inhibition of upstream RTK signaling (12). How-
ever, MEK inhibition relieves this negative feedback, which limits
efficacy of MEKi as single agents by rapid development of adaptive
resistance (13–16). There is a need for a better understanding of the
adaptive response to MEK inhibition and consequent modulation of
RAS effector signaling pathways.

A complex interplay of upstream signaling and parallel effector
pathways characterizes NF1-driven tumorigenesis, and inhibiting
more than one RAS effector pathway may be necessary for complete
antitumor effect. Short-term adaptation of the signaling network to
inhibition of MEK-ERK, via relief of feedback inhibition and devel-
opment of adaptive resistance, often through activation of RTK, results
in attenuated effectiveness of the targeted therapy (13, 14, 17–19).
Recent studies provide evidence that pharmacologic inhibition of
SHP2 is a viable strategy to target RTK-driven cancers and to prevent
RTK-driven drug resistance (20, 21). SHP2 phosphatase, encoded by
PTPN11, facilitates RAS-GEF–mediated RAS-GTP loading and
recruitment to the cell membrane, where RTK activation occurs, and
therefore is required for RAS/ERK pathway activation by most
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RTK (22). In addition, SHP2 has been identified as a central node
in adaptive resistance driven by RTK reactivation andMEK inhibition
in multiple cancer models (21, 23). These findings provide a paradigm
for the design of a rational combination approach that inhibits
inhibitor-induced pathway reactivation and can be explored as a
combinatorial therapeutic strategy to effectively target NF1-mutant
models of MPNST.

We hypothesized that RTK reactivation in response to short-term
and long-term exposure to MEK inhibition confers intrinsic and
acquired resistance in NF1-MPNST. We therefore used an unbiased
array–based screen of protein tyrosine and serine/threonine kinase
activity to determine the short-term adaptive response to MEK
inhibition, and subsequently tested the combination of MEK and
SHP2 inhibition to determine whether it could more effectively inhibit
ERK signaling output in tumors with activation of ERK signaling due
to loss ofNF1.We found that combinedMEKand SHP2 inhibitionwas
more effective than MEK inhibition alone and also demonstrated
efficacy in models of MPNST with acquired resistance to MEKi.

Materials and Methods
Cell lines, antibodies, and reagents

H1838 was obtained from the American Type Culture Collection.
WM3918 and M308 were obtained from Dr. David Solit at Memorial
Sloan Kettering Cancer Center (New York, NY). STS26T, ST8814, and
NF90.8 were kindly provided byDr. Gregory Riggins at JohnsHopkins
University (JHU, Baltimore, MD). NF94.3, NF96.2, NF10.1, and
NF11.1 were kindly provided by Dr. Margaret Wallace at University
of Florida (Gainesville, FL). Four patient-derived MPNST cell lines
(JH-2-002, JH-2-009, JH-2-031, and JH-2-055) and three patient-
derived neurofibroma cell lines (JH-2-060, JH-2-074, and JH-2-077)
were generated in our laboratory from biospecimens collected during
surgical resection fromNF1 patients (24).Material was collected under
an Institutional Review Board (IRB)–approved protocol (JHU IRB
#J1649), and all patients provided written informed consent. All cell
lines used in our study were verified by short-tandem repeat profiling
for cell line authentication at Johns Hopkins University Core Facility,
tested negative for Mycoplasma contamination, and passaged in vitro
for fewer than 3 months after resuscitation. The base medium
for H1838, WM3918, M308, STS26T, ST8814, and NF90.8 is RPMI;
for NF94.3, NF96.2, NF10.1, NF11.1, JH-2-002, JH-2-009, JH-2-031,
JH-2-055, JH-2-060, JH-2-074, and JH-2-077 is DMEM/F12. All
growth media were supplemented with 10% FBS, 2 mmol/L L-gluta-
mine, and 1% penicillin–streptomycin. Trametinib-resistant cell lines
were maintained in complete growth medium plus 20 nmol/L of
trametinib.

Antibodies against DUSP6 (# ab76310) were from Abcam.
Antibodies against cyclin D1 (sc-718 and sc-8396) were from Santa
Cruz Biotechnology. Antibodies against other proteins and phos-
pho-proteins were obtained from Cell Signaling Technology.

Trametinib and RMC-4550 for in vitro study were purchased from
SelleckChem. SHP099 for in vitro study was purchased from Med-
ChemExpress. Trametinib and SHP099 for in vivo study were pur-
chased from Chemietek. Drugs for in vitro studies were dissolved in
DMSO to yield 10 or 1 mmol/L stock solutions, and stored at �20�C.

Generation of drug-resistant cell lines
Cell lines resistant to trametinib were generated by exposing the

parental NF1-MPNST cell lines ST8814 and NF90.8 to 20 nmol/L of
trametinib for 5 months of continuous drug exposure (with change of
medium twice per week). The parental and resistant cells were then

sent for targeted gene sequencing on a clinical oncology panel covering
637 genes important in oncogenesis, together with copy-number
variation analysis, in the Molecular Diagnostics Laboratory at Johns
Hopkins, as previously described (25, 26).

Kinome activity profiling using PamChip peptide microarrays
PamChip peptide arrays (PamGene International BV) measure

the ability of active kinases in a protein lysate sample to phosphor-
ylate specific peptides imprinted on multiplex peptide arrays (27).
Five NF1-MPNST cell lines (ST8814, NF94.3, NF96.2, NF10.1, and
JH-2-002) were treated for 24 hours with DMSO or trametinib (20
nmol/L). Cells were lysed with M-PER Mammalian Extraction
Buffer (Thermo Fischer Scientific, # 78501) supplemented with
Halt Phosphatase Inhibitor Cocktail (Thermo Fischer Scientific,
# 78420) and Halt Protease Inhibitor Cocktail EDTA free (Thermo
Fischer Scientific, # 87785), and protein quantification was deter-
mined using Pierce Coomassie Plus (Bradford) Assay Kit (Thermo
Fischer Scientific, #23236) according to PamGene instructions
(protocol #1160). Measurements of kinome activity were performed
on a PamStation-12 by PamGene (28). Briefly, the PamChip protein
tyrosine kinase (PTK) array was processed in a single-step reaction
in which 5.0 mg of protein lysate was dispensed onto PTK array
dissolved in protein kinase buffer (proprietary information) and
additives including 1% BSA, 10 mmol/L dithiothreitol, FITC-
conjugated pY20 antibody, and 400 mmol/L ATP. The STK array
was processed in a two-step reaction in which 1 mg of protein lysate
was used with protein kinase buffer (proprietary information)
supplied with 1% BSA, primary STK antibody mix, and 400
mmol/L ATP (sample mix). After an initial incubation of 110
minutes, the reaction mix was removed, and the secondary
FITC-labeled antibody mix was added. In both arrays, software-
based image analysis (BioNavigator software V.6.3 from PamGene)
integrates the signals obtained within the time course of the
incubation of the kinase lysate on the chip into one single value
for each peptide for each sample (exposure time scaling). Peptide
phosphorylation kinetics (for PTK) and its variations (for PTK/
STK) were used to remove low signal peptides as quality control
analysis (QC). QC passed 113 nonredundant peptides from PTK,
and 118 peptides from STK were used for further analysis. Indi-
vidual peptide phosphorylation intensities were normalized to
DMSO control, followed by log2 transformed (LFC) for easier
visualization (Supplementary Table S1). The peptides with signif-
icant differences in phosphorylation intensity (trametinib vs.
DMSO control, using paired t test, P < 0.05) are visualized as either
volcano and bar plots or as heatmap using the R pheatmap package.

Upstream kinase analysis (UKA) of PTK and STK data was done
using default setting of the PamApp (PTK or STK UKA 2018 V.4.0)
on BioNavigator Analysis software tool as described before (29).
The analysis is based on documented kinase–substrate relationships
(from iviv database and literature-based protein modifications such
as HPRD, PhosphoELM, PhosphositePLUS, Reactome, UNIPROT)
complemented with “in silico” predictions that are retrieved from the
phosphoNETdatabase. The analysis generated threemajor parameters
calculated by the PamApp (Supplementary Table S1): (i) Mean kinase
statistic (s) depicts the overall change of the peptide set that represents
a kinase. For instance, a larger positive value indicates a larger activity
in trametinib-treated cells compared with DMSO controls. (ii) Mean
significance score (Qsg) indicating the significance of the change
represented by themean kinase statistic (s) between two groups (using
500 permutations across sample labels). (iii) Mean specificity score
(Qsp) indicates the specificity of themean kinase statistics with respect
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to the number of peptides used for predicting the corresponding kinase
(using 500 permutations across target peptides). The final ranking of
the kinases was based on “mean kinase score,”which was calculated by
addition ofQsg and specificity score (Qsp). Top predicted kinases from
significant PTK and STK peptide sets are represented on phylogenetic
tree of the human protein kinase family generated by Coral (http://
phanstiel-lab.med.unc.edu/CORAL/; ref. 30).

Immunoblotting
Cells were disrupted on ice in NP40 lysis buffer as previously

described (7). Protein concentration was determined with Pierce BCA
protein assay kit (# 23227, ThermoFisher Scientific). Equal amounts of
protein were separated by SDS-PAGE, transferred to nitrocellulose
membranes, immunoblotted with specific primary and secondary
antibodies, and detected by chemiluminescence with the ECL detec-
tion reagents, Immobilon Western chemiluminescent HRP substrate
(# WBKLS0500, Millipore), or Pierce ECL Western blotting substrate
(# 32106, Thermo Fisher Scientific). The membranes were imaged
using ChemiDoc touch imaging system (Bio-Rad), and relative
changes in p-MEK, p-ERK, and DUSP6 levels were quantitated by
densitometry analysis using Image J.

Cell proliferation assay
Cells were seeded in 96-well plates at 2,000 cells per well. A dose

range of the compound indicated was prepared by serial dilutions and
then added to the dishes containing adherent cells. Cells were incu-
bated with drug for the indicated time. Cell growth was quantitated
using the Cell Counting Kit-8 (Dojindo). For each condition, three
replicates of each concentration were measured. Relative survival in
the presence of drugs was normalized to the untreated controls after
background subtraction. Graphs were generated using Prism 8 based
on the average of three replicates.

Active RAS pull-down assay
Cells were seeded in 10-cm dishes. The following day, the 70% to

80% confluent cells were collected, and GTP-bound RAS was quan-
tified using active RAS detection kit (# 8821) from Cell Signaling
Technology according to the manufacturer’s instructions.

RNAi
RNAi was performed using ON-TARGETplus Non-targeting

Pool (#D-001810-10-05, Dharmacon) and SMARTPool ON-
TARGETplus Human PTPN11 siRNA (#L-003947-00-0005, Dhar-
macon) to knockdown (KD) the expression of nontargeting control
(NTC) and SHP2, respectively, using DharmaFECT 1 Transfection
Reagent (#T-2001-02, Dharmacon) per the manufacturer’s proto-
cols. The KD of SHP2 was confirmed at protein expression level
using immunoblot.

Colony formation assay
NF1-MPNST cells were treated with DMSO, trametinib (5 nmol/L),

and/or SHP099 (1 and 3 mmol/L) for 3 weeks. Cells were washed with
PBS, fixed with 10% neutral buffered formalin, and then stained with
0.1% crystal violet for 30 minutes.

Soft agar assay
Soft agar assay was performed as previously described (31).

Briefly, 50,000 cells growing in log phase were mixed with agar
(0.33%), treated with DMSO, trametinib, SHP099, or their combi-
nation, and plated over a bottom layer of 0.5% agar in 6-well plates.
Cells were incubated at 37�C for 3 weeks. Colonies were then

stained with crystal violet (Sigma-Aldrich) for 1 hour, and five
random fields per chamber were acquired using Nikon Eclipse
Ti inverted microscope (Nikon). Measurements were based on
technical duplicates for each condition.

In vivo mouse studies
Athymic nude (# 002019) and NOD scid gamma (NSG, # 005557)

female mice were purchased from the Jackson Laboratory. All mouse
experiments were approved by the Institutional Animal Care and Use
Committee at Johns Hopkins under protocol # MO19M115. Minced
tumor fragments from donor mice were implanted subcutaneously
close to the sciatic nerves of 6- to 8-week-old athymic nude (NF90.8) or
NSG (PDX JH-2-002) female mice. Drug treatment was started when
tumor size reached roughly 600 mm3 (NF90.8) or 400 mm3 (PDX JH-
2-002). Mice were randomized into treatment groups by an algorithm
that moves animals around to achieve the best-case distribution to
assure that each treatment group has similar mean tumor burden and
SD. Vehicle, trametinib (0.3 mg/kg, Chemietek; dissolved in 5%
DMSO and 0.5% hydroxypropyl methyl cellulose and 0.2% Tween
80), SHP099 (50 mg/kg, Chemietek; dissolved in 5% DMSO and 0.5%
methyl cellulose and 0.1% Tween 80), or the combination were
administrated by oral gavage once daily, based on mean group body
weight, with treatment schedule of 5 days on/2 days off. The endpoint
of the experiment for efficacy studies was considered 4 weeks on
treatment or the longest tumor diameter of 2 cm as per our approved
protocol, whichever occurred first. Tumors were measured twice
weekly by calipering in two dimensions, and tumor volume was
calculated by: L � W2(p/6), where L is the longest diameter and W
is thewidth. Fold-change tumor growthwas calculated relative to day 0
with the formula: fold change in tumor growth ¼ (tumor volume on
day X/tumor volume on day 0)–1.

Ki-67 IHC
Ki-67 IHC was performed at Johns Hopkins IHC core facility.

Briefly, immunolabeling for Ki-67 was performed on formalin-fixed,
paraffin-embedded sections on a Ventana Discovery Ultra auto-
stainer (Roche Diagnostics). Following dewaxing and rehydration on
board, epitope retrieval was performed using Ventana Ultra CC1
buffer (# 6414575001, Roche Diagnostics) at 96�C for 48 minutes.
Primary antibody, anti-Ki-67 (1:200 dilution; # Ab16667, lot num-
ber GR3185488-1, Abcam) was applied at 36�C for 60 minutes.
Primary antibodies were detected using an anti-rabbit HQ detection
system (# 7017936001 and 7017812001, Roche Diagnostics) fol-
lowed by Chromomap DAB IHC detection kit (# 5266645001,
Roche Diagnostics), counterstaining with Mayer’s hematoxylin,
dehydration, and mounting. Images were taken under Nikon
Eclipse Ti microscope (Nikon) at 100X magnification, and repre-
sentative images were shown.

Results
Adaptive response to MEK inhibition in NF1-MPNST occurs
through global activation of tyrosine and serine/threonine
kinases

Recent studies have demonstrated that the response to single-agent
MEK inhibition in models of MPNST is characterized by incomplete
and short-lived inhibition of phosphorylated ERK, accompanied by
onlypartial inhibitionofgrowthandproliferation, atbest (9, 10, 32–34).
We have shown that the adaptive signaling responses to MEK–ERK
pathway inhibition involve upregulation of upstream signals, includ-
ing increased responsiveness of RTK, increased RAS, and activation of
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parallel pathways that normally remain quiescent in the presence of
hyperactivated ERK (14).

We therefore set out to identify the global changes in tyrosine and
serine/threonine kinase activity in response to MEK inhibition in
MPNST cell lines, in order to identify candidate targets for combi-
nation therapy. We used the PamChip peptides array-based PTK and
phospho-serine/threonine (STK) kinase activity assays, which gener-
ate relative phosphorylation intensity data of synthetic peptides con-
taining known substrate recognition sites of PTK and STK, to identify
changes in five NF1-MPNST cell lines in response toMEKi inhibition.
Using a differential analysis of all five MPNST lines in aggregate, we
identified a total of 41 PTK peptides and 28 STK peptides that showed
significantly altered phosphorylation in response to MEKi (Fig. 1A
and B; Supplementary Table S1). Among these, multiple RTK, includ-
ing MET, EGFR, ERBB2, Ephrins, PDGFRb, and KIT, as well as the
protein tyrosine phosphatase SHP2/PTPN11, displayed increased
phosphorylation at the 24-hour time point following MEK inhibition
(Fig. 1C, individual log fold change by peptide, grouped by class). We
also calculated the mean kinase statistic and mean kinase score for
branches and nodes on the phylogenetic tree of the human protein
kinase family and predicted top upstream kinases from the signifi-
cantly altered PTK/STK peptides (Fig. 1D). The significantly altered
individual PTK/STK peptides are shown in heatmap form, according
to cell line (Fig. 1E and F). As demonstrated here,multiplemembers of
the tyrosine kinase family become significantly upregulated by MEKi.
These data indicate an adaptive response to MEK inhibition via RTK
activation and are consistent with a rebound in ERK phosphorylation
at the later 24-hour time point (Fig. 1G; Supplementary Table S1). The
assay validated the downregulation of ERK at the early 6-hour time
point, but no other peptides were identified that showed significantly
lower phosphorylation after 24-hour treatment ofMEKi, when the five
cell lines were analyzed in aggregate in comparison with DMSO
control.

SHP2 is activated in response to MEK inhibition in MPNST
Given that RAS activity is elevated in the context of loss of NF1

and can be further promoted by relief of negative feedback
signals resulting from MEK inhibition, we measured the levels of
phosphorylated SHP2 at steady state in ten cell linemodels ofMPNST,
representing one sporadic (STS26T) and nineNF1-associatedMPNST
(all others; Fig. 2A). In ST8814, we observed increases in phospho-
AKT (pAKT), phospho-S6-kinase (pS6K), and phospho-ribosomal
protein S6 (pS6) in response to MEK inhibition, consistent with a
release-of-negative feedback compensatory increase in parallel path-
ways (Fig. 2B). In response toMEK inhibition, SHP2 phosphorylation
was either increased or demonstrated a mobility shift indicative of
altered phosphorylation state, in the eight cell lines tested. In most
cases, an inverse relationship was seen between shift in SHP2 phos-

phorylation and ERK phosphorylation (Fig. 2B–D). We therefore
concluded that compensatory increases in SHP2 activity could be a
target for combination therapy to enhance the response to MEK
inhibition alone.

MPNST cells demonstrate modest responses to SHP2 inhibition
In order to determine the role of SHP2/PTPN11 in mediating the

adaptive response to MEKi, we first performed RNAi experiments to
knockdown SHP2/PTPN11 in two NF1-MPNST cell lines. MPNST
cells demonstrated distinct sensitivity to PTPN11 knockdown
(Fig. 3A). We validated SHP2 KD at protein level and further
examined the effects of it on ERK signaling. We found that SHP2
KD reduced pSHP2 (Tyr542), pMEK (Ser217/221), and in the sensitive
cell line (ST8814) cyclin D1 expression, but had minimal effects on
pERK after 72- and 96-hour siRNA transfection (Fig. 3B).

Small-molecule inhibitors of SHP2 have recently been developed
and have been shown to synergize with MEKi in multiple models
reported to date (21, 23, 35, 36). Two of these are now in single-agent
phase I clinical trials for solid tumors (TNO155 and RMC-4630;
ref. 37). A more recent study demonstrates that loss of NF1 confers
sensitivity to SHP2 inhibition alone in NF1-mutant melanoma and
lung cancer (22). We first therefore determined the single-agent
activity of the SHP2 inhibitors (SHP2i) SHP099 (20) and RMC-
4550 (22) in 11 MPNST cell lines (Fig. 3C and D). None of the
MPNST cell lines weremarkedly sensitive at doses up to 3 mmol/L, and
only two cell lines (ST8814 and JH-2-009) demonstrated > 50%
inhibition of proliferation at the maximum dose of SHP099 tested of
10 mmol/L (Fig. 3C). Three cell lines (ST8814, NF11.1, and JH-2-009)
demonstrated intermediate sensitivity to RMC-4550, with the con-
centration for 50% of maximal inhibition of cell proliferation (GI50)
within 3 mmol/L (Fig. 3D). These results were comparable with other
NF1-deficient cancer cell lines (WM3918 and M308, NF1-null mel-
anoma; H1838, NF1-null NSCLC, Fig. 3E; ref. 22). Of note, the
sporadic MPNST cell line STS26T and the melanoma cell line
M308 harbor the BRAF V600E mutation, which confers resistance
to SHP2 inhibition (22, 38). We further tested the effects of SHP099
and RMC-4550 on signaling, at multiple doses, and found that no
greater inhibition of phospho-MEK (pMEK) and phospho-ERK
(pERK) at 1 hour was elicited beyond what was seen with 3 mmol/L
SHP099 or 1 mmol/L RMC-4550 (Fig. 3F and H; Supplementary
Fig. S1), and so chose that as the dose for future experiments. Similar to
the response with single-agent MEK inhibition, rebound in ERK
phosphorylation upon SHP2i treatment was observed starting from
the 6-hour time point, following the initial maximum decrease at the
early 2-hour time point (Fig. 3G and I). In some cases, rebound
reactivation of pS6K and pS6 was also observed, suggestive of only
transient inhibition of signaling downstream of SHP2, followed by
adaptive reactivation of multiple RAS effector pathways.

Figure 1.
Adaptive response toMEK inhibition inNF1-MPNST occurs through global activation of tyrosine and serine/threonine kinases. FiveNF1-MPNST cell lineswere treated
with trametinib (20 nmol/L) or DMSO for 6 and 24 hours. Kinase activity was measured using the PamChip PTK and Ser/Thr kinase (STK) arrays. A and B, Volcano
plots demonstrating fold change (trametinib vs. DMSO) and P value for peptide phosphorylation from PTK (A) and STK (B) PamChip arrays at 24-hour time point in
the fiveNF1-MPNST cell lines. Red dots, significantly altered phosphopeptides,P value <0.05, paired t test; black dots, phosphopeptideswith no significant alteration
in phosphorylation). C, Individual fold-change scores for the 41 significant phosphopeptides in PTK (top) and 28 significant phosphopeptides in STK (bottom)
groupedwith theirmajor functional class.D, Toppredicted upstreamkinases visualized on the Coral kinome tree plot, wheremean kinase statistics values, encoded in
branch color and node color, indicate the overall change of the peptide set that represents the kinase, with value > 0 indicating higher activity in trametinib
(20 nmol/L)-treated MPNST cell lines relative to DMSO control for 24 hours. Mean kinase scores, encoded in node size, were used for ranking kinases based on their
significance and specificity in terms of the set of peptides used for the corresponding kinase. E and F,Heatmap of 41 significantly altered Tyr (PTK, corresponds toA)
and 28 significantly altered Ser/Thr (STK, corresponds toB) bait phosphopeptides, determined byPamChip array in five individual NF1-MPNST cell lines.G,pMEK and
pERK were measured by immunoblot in response to DMSO or trametinib (T, 20 nmol/L) treatment for 6 and 24 hours as shown, corresponding to samples used for
PamChip arrays. LFC, log2-fold change.
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The combined inhibition of MEK and SHP2 attenuates RAS
reactivation and synergistically inhibits ERK signaling rebound
and cell growth

We next sought to test the combined effect of MEKi and PTPN11
suppression by performing siRNA-mediated PTPN11 knockdown,
and our data demonstrated that PTPN11 knockdown prevented
feedback-induced SHP2 phosphorylation by trametinib, attenuated
reactivation of ERK signaling, and synergistically inhibited cyclin
D1 expression when combined with trametinib in ST8814 and
NF90.8, despite minimal inhibition in baseline pERK (Fig. 4A).
Further evidence showed that siPTPN11 also sensitized the NF1-
MPNST cells to MEKi (Fig. 4B and C; Supplementary Fig. S2A and
S2B), similar to a previous observation that PTPN11 suppression
confers sensitivity of BRAF-mutant colon cancer cells to RAF
inhibition both in ERK signaling and cell growth, with no effect
on baseline pERK (23).

Given the SHP2 activation in response to MEK inhibition, and the
limited efficacy of single-agent SHP2i inNF1-MPNST cell linemodels,
we hypothesized that a SHP2i could synergize with the MEKi trame-
tinib to inducemore potent and prolonged inhibition of ERK signaling
inmodels of NF1-MPNST.We exposed nineNF1-MPNST cell lines to
trametinib (at a low dose of 10 nmol/L) with the SHP2i SHP099 (at

3 mmol/L) over a time course of treatment. We observed that pSHP2
and pMEK induced by trametinib were attenuated, and more potent
inhibition of pERK, signaling intermediates in the PI3K/AKT pathway
(pAKT, pS6K, and pS6), and the downstream effector cyclin D1 was
achieved with trametinib plus SHP099 than with either compound
alone, and that these effects were durable until 24 hours (Fig. 4D
and E; Supplementary Fig. 2C). In fact, MEKi-associated increases
in RAS-GTP levels seen as a result of relief of negative feedback were
mitigated in the presence of SHP099 (Fig. 4F). Evidence of cell
death, as measured by expression of cleaved PARP and cleaved
caspase-3, was evident in multiple cell lines at 24 and 48 hours after
a single dose of the two agents in combination (Fig. 4G; Supple-
mentary Fig. S2D and S2E). In addition, the combination resulted in
greater inhibition of proliferation than either agent alone, in nine
out of ten MPNST cell lines (Fig. 4H; Supplementary Table S2), and
a similar result was observed in five out of six cell lines with a long-
term (3 weeks) colony formation assay (Fig. 4I). Indeed, the one cell
line (JH-2-031) that did not demonstrate an additive effect of
combined MEK and SHP2 inhibition harbors an oncogenic muta-
tion (PIK3CA Q546K). In this cell line, there is modest SHP2i
sensitivity, but no effect of the combination, as would be predicted
by its genotype.
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Figure 2.

SHP2 is activated in response to MEK inhibition in MPNST. A, Steady-state levels of pSHP2, pMEK, and pERK were determined using immunoblot in ten MPNST
cell lines. B, ST8814 cells were treated with trametinib 20 nmol/L (þ) or DMSO (�) as control, over a time course as indicated. Activity of SHP2 and signaling
intermediates in ERK and PI3K/AKT pathways was detected using immunoblot. C, Seven MPNST cell lines were treated with DMSO (�) or MEKi trametinib at
20 nmol/L (þ) as in B, and proteins were detected as indicated. D, Signal intensity of pSHP2 and pERK in B and C at 6 and 24-hour time points was quantified
using densitometry analysis.
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Combined inhibition of MEK and SHP2 is active against two
MEKi-resistant in vitro models

We generated models of acquired resistance to trametinib in
two NF1-MPNST cell lines with baseline intermediate sensitivity to

trametinib by continuous drug exposure for five months (Supplemen-
tary Fig. S3A and S3B) and identified acquired HGF/MET upregula-
tion in ST8814-resistant (ST8814 R) and PDGFRb upregulation in
NF90.8-resistant (NF90.8 R) cells, respectively (34). We tested the
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Figure 4.

The combined inhibition of MEK and SHP2 attenuates RAS reactivation and synergistically inhibits ERK signaling rebound and cell growth. A, Three NF1-MPNST cell
lineswere treatedwith DMSOor 10 nmol/L trametinib for 6 hours after 96-hour siRNA transfection, targetingNTC or PTPN11.B, ST8814 andNF90.8were treatedwith
DMSO or 10 nmol/L trametinib for 24 hours after 96-hour siRNA transfection. Cell number was counted using the trypan blue dye exclusion assay. C, ST8814 was
treated with increasing dose of trametinib for 72 hours after 72-hour siRNA transfection. Cell viability was evaluated using CCK-8 assay.D,NF90.8 cells were treated
with DMSO, SHP099 (3 mmol/L), trametinib (10 nmol/L), or their combination over a time course as shown. E, Three NF1-MPNST cell lines were treated with DMSO,
SHP099 (3 mmol/L), trametinib (10 nmol/L), or their combination over a time course as shown. F, Four NF1-MPNST cell lines were treated with DMSO, SHP099
(3 mmol/L), trametinib (10 nmol/L), or their combination for 24 and 48 hours, and RAS-GTP was assessed by active RAS pull-down assay. G, Three NF1-MPNST cell
lines were treated with DMSO, SHP099 (3 mmol/L), trametinib (10 nmol/L), or their combination for 24 and 48 hours. The indicated proteins were detected by
immunoblot. H, Ten NF1-MPNST cell lines were treated with DMSO, SHP099 (1 and 3 mmol/L), and/or trametinib (5 and 10 nmol/L) on day 0. Cell viability was
measured byCCK-8, relative to control, on day 5. Viability is shown numerically (percent of control) and via heatmap, representing the average of three replicates per
condition. I, Six NF1-MPNST cell lineswere treatedwith DMSO, trametinib (5 nmol/L), and/or SHP099 (1 and 3 mmol/L) for 3weeks. Cellswerewashedwith PBS, fixed
with 10% neutral buffered formalin, and then stained with 0.1% crystal violet for 30 minutes. Representative images are shown.
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effects of SHP099 in these cell lines, both in the continued presence of
trametinib, or seeded without trametinib, prior to SHP2i dosing.
Neither resistant line was sensitive to SHP2 inhibition as a single
agent (Fig. 5A and B). When given together, the combination of
trametinib plus SHP099 had greater effects on cell viability than either
drug alone, regardless of whether cells were maintained in the con-
tinuous presence of trametinib (Fig. 5C–F; Supplementary Fig. S3C
and S3D).We further observed that the combination of trametinib and
SHP099 synergistically inhibited ERK signaling, compensatory acti-
vation of PI3K/AKT signaling induced by MEKi, and cyclin D1
expression (Fig. 5G and H). These data demonstrate that NF1-
MPNST cells with acquired resistance to MEKi can be resensitized
to MEK inhibition through combined use of MEK and SHP2 inhibi-
tors, which can potently inhibit oncogenic signaling-dependent tumor
cell growth in MPNST cells both na€�ve to and resistant to trametinib.

Combined inhibition of MEK and SHP2 demonstrates in vitro
efficacy in neurofibroma cell line models

MEK inhibition has demonstrated the ability to reduce tumor
volume and improve symptoms in the majority of patients with
NF1-associated plexiform neurofibroma, the precursor to MPNST in
most patients with NF1 (39–41). With this in mind, we also tested the

ability of combined MEK/SHP2 inhibition to reduce cell growth in
patient-derived plexiform neurofibroma cell lines. The two SHP2
inhibitors had only modest activity as single agents (Fig. 6A–D), but
like in MPNST, the combination resulted in sustained inhibition of
pSHP2, pERK, and AKT signaling (pAKT, pS6K, and pS6) and
CyclinD1 expression at 24-hour time point (Fig. 6E), and a more
profound effect on cell viability, compared with either drug alone
(Fig. 6F; Supplementary Table S2).

MEKi plus SHP2i is active against MPNST in vivo xenografts
To determine the in vivo effects of the combination, we treatedmice

bearing subcutaneous xenograft tumors with trametinib (0.3 mg/kg
once daily, at half dose of themouseMTD¼ 0.62mg/kg once daily, the
equivalent dose to that used in humans; ref. 42), SHP099 (50 mg/kg
once daily), or the combination. No adverse effects of drug treatment
on body weight were observed. Again, greater growth inhibition was
observed, and this effect was sustained for up to 28 days of treatment in
the two MPNST xenograft models tested (Fig. 7A and B; Supplemen-
tary Fig. S4). The combination was associated with a more profound
reduction in Ki-67 staining, pMEK and pERK inhibition, and down-
regulation of the ERK-dependent transcriptional output marker
DUSP6 (Fig. 7C–E).
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Figure 5.

Combined inhibition of MEK and SHP2
is active against two MEKi-resistant
in vitro models. A and B, ST8814 (A)
and NF90.8 (B) parental (P) and resis-
tant (R) cells were treated with
increasing dose of SHP099 for
72 hours, and cell viability was evalu-
ated using the CCK-8 cell viability
assay. C–F, ST8814 (C and D) and
NF90.8 (E and F) parental (P) and
resistant (R) cells were grown in
soft agar and treated with DMSO, tra-
metinib (T, 5 nmol/L), SHP099 (S, 1
mmol/L), or their combination (TþS)
for 3 weeks. The y-axis represents
the number of colonies, expressed
as an average of five fields per well,
two wells per condition, relative to
DMSO controls, for each cell line.
G and H, ST8814- (G) and NF90.8-
(H) resistant (R) cells were treated
with DMSO, SHP099 (3 mmol/L), tra-
metinib (10 nmol/L), or their combina-
tion over a time course. The indicated
proteins were detected by immuno-
blot. Data, mean� SEM; ��� , P < 0.001;
���� , P < 0.0001, unpaired Student t
test.
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Discussion
Loss of NF1 and consequent hyperactivation of RAS are key

oncogenic events in the vast majority of MPNST, but loss of NF1
alone is insufficient for development of malignancy, as precursor
lesions also demonstrate loss of NF1, as well as loss of CDKN2A, yet
these tumors are not associated with the same risks and mortality.
Although inhibiting RAS has emerged as a common concept in the
design of combination treatment strategies, a better understanding of
the dynamic changes in signaling pathways and adaptive resistance
mechanisms in response to RAS pathway targeted inhibition, leading
to rational and effective combination strategies, are urgent needs to
develop therapeutic advances for patients with MPNST. The selection
of agents for the design of combination therapeutic trials depends on
(i) knowledge of the key oncogenic events in the cancer type; (ii)
understanding of the adaptive response to inhibition of the primary
oncogenic event; (iii) availability of compounds to target the signaling
modules that are adaptively activated; and (iv) demonstration of safety
of two or more agents in combination. To begin to address these goals,
we designed our studies to expose the adaptive signaling response to
MEK inhibition, a single-agent strategy that has gained attention, yet
has not demonstrated more than minimal activity.

Using an unbiased array–based screen, designed with hundreds of
phosphorylation sites containing peptides representing a spectrum of
both tyrosine kinase and serine/threonine kinase activity, we set out to
identify key kinases that characterized the adaptive response to MEK
inhibition. Multiple cell lines with varied genotypes were used in
order to capture the heterogeneity of responses that we predicted
would occur. These results demonstrated a multitude of RTK that

became upregulated in the short term, suggesting potential targets
for therapeutic combination. But selecting a single RTK to inhibit,
or even a single multitargeted RTK inhibitor, is a challenge that
cannot be resolved at the individual patient level with current
techniques, even with an improved understanding of the steady-
state activation of these RTK. Current clinical trials have addressed
this issue through dual targeting of multiple downstream effector
pathways, including MEK plus mTOR inhibition (NCT-03433183).
Our data suggested that inhibiting the central convergence point
from a multitude of upstream kinases to downstream RAS effector
pathways would offer a novel strategy.

Small-molecule inhibitors of SHP2 have recently been devel-
oped (21, 23, 35, 36), and two of these are now in single-agent phase
I clinical trials for patients with advanced solid tumors (TNO155 and
RMC-4630; ref. 37). Among these is SHP099, which, compared with
active-site targeting SHP2 inhibitors, has no off-target effects on SRC
or other tyrosine kinases such as PDGFRb or a panel of phosphatase
including full-length SHP1 in vitro (20). A recent study demonstrates
that loss of NF1 confers sensitivity to SHP2 inhibition alone in NF1-
mutant melanoma and lung cancer (22). In our MPNST cell line
models, however, SHP2 inhibition alone was insufficient to inhibit cell
growth and ERK signaling. Insight into the genomics of MPNST
suggests a role for cooperative genomic events as putative explanation
for this difference. Loss of function (LOF) of NF1 occurs in about
87.5%MPNST (43, 44). Compared with NF1-null melanoma and lung
cancer, polycomb repressive complex 2 (PRC2) inactivation via LOF of
SUZ12 or EED recurrently and specifically prevails inMPNST (44, 45),
and has been implicated in amplification of RAS-driven transcription
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Figure 6.

Combined inhibition of MEK and
SHP2 demonstrates in vitro efficacy
in neurofibroma cell line models.
A and B, Three JH patient-derived
neurofibroma cell lines were exposed
to increasing dose of SHP099 (A) and
RMC-4550 (B) for 7 days, and cell
viability was evaluated using the
CCK-8 assay. C and D, JH-2-077 was
treated with increasing concentra-
tions of SHP099 (C) and RMC-4550
(D) for 1 hour. E, JH-2-077 was treat-
ed with DMSO, SHP099 (3 mmol/L),
trametinib (10 nmol/L), or their com-
bination over a time course. F, Three
neurofibroma cell lines were treated
withDMSO, SHP099 (1 and 3mmol/L),
and/or trametinib (5 and 10 nmol/L)
on day 0. Cell viability was evaluated
using the CCK-8 assay on day 5 and
represented as in Fig. 4D.
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through epigenetic modulation on chromatin, thereby further poten-
tiating the effects of NF1 LOF (46). Given the highly recurrent and
specific inactivation of the tumor suppressors NF1, products of
CDKN2A, and PRC2, and their potential cooperative roles in the
context of MPNST pathogenesis, we speculate that inhibition of RAS-
GTP loading via SHP2 inhibition would not be sufficient to offset the
loss of NF1 RAS-GAP activity and to effectively inhibit RAS-mediated
ERK signaling output that may be further amplified by PRC2 loss. We
therefore tested the hypothesis that small-molecule inhibitors of SHP2
are attractive candidates for combination with MEK inhibition.

MPNST cells develop rapid, adaptive signaling responses through
global activation of tyrosine and serine/threonine kinases, especially
PDGFRb, c-MET, HER kinases, and the phosphatase SHP2. In
contrast to other reports, FGFR did not emerge as a significantly
altered RTK in our analysis, suggesting that differences in which RTK
mediate(s) adaptive resistancemay be lineage-driven (47, 48). As such,
we hypothesized that SHP2 inhibition can attenuate the RTK-
dependent adaptive resistance and can enhance the sensitivity of
NF1-mutant models toMEK inhibition. Collectively, our in-cell active
kinase screen inferred from the phosphorylated peptides (PTK and
STK PamChip) and further biochemical and biological validation
demonstrate that SHP2 is activated in response to MEK inhibition
in MPNST; that combined inhibition of MEK and SHP2 attenuates

RAS reactivation and synergistically inhibits ERK signaling rebound
and cell growth; and that the combination is active against MPNST
in vivo xenografts. These findings are concordant with those reported
in triple-negative breast cancer andKRAS-mutant cancer models (48),
and add to the spectrum of genotypically defined cancer types in which
MEK plus SHP2 inhibition represents an attractive therapeutic strat-
egy. It is particularly notable that NF1-MPNST cells are intrinsically
resistant to single agent SHP2i, suggesting that SHP2i resistance is
MEK-dependent, as previously reported by others (21).

MEK inhibition with selumetinib has demonstrated the ability to
reduce tumor volume and improve symptoms in the majority of
patients with NF1-associated plexiform neurofibroma, the precursor
to MPNST in most patients with NF1 (39–41). Although these results
have been widely celebrated in the NF1 community, there is still a
fraction of patients forwhomMEK inhibitor does not provide the same
benefit, and strategies to overcome the intrinsic resistance in the setting
of initial response are needed. In our models, the combined inhibition
of MEK and SHP2 demonstrates in vitro efficacy in plexiform neu-
rofibroma models. Moreover, the combined inhibition of MEK and
SHP2 can resensitize NF1-MPNST cells that have developed acquired
resistance to MEKi, to MEK inhibition.

Our PTK/STK PamChip analysis indicated that global activation of
tyrosine and serine/threonine kinases comprised the adaptive response
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Figure 7.

MEKi plus SHP2i is active against MPNST in vivo xenografts. A and B, Athymic nude mice bearing NF90.8 (A) or NSG mice bearing patient-derived JH-2-002 (B)
xenografts were treated with vehicle, trametinib (0.3 mg/kg), SHP099 (50mg/kg), or the combination via oral gavage once daily, 5 days on/2 days off for 4 weeks.
Measurementwas taken twice perweek. The fold change in tumor volume comparedwith baseline is graphed as a function of days on treatment.C, Four tumors from
each cohort as in Awere collected at the completion of treatment, and Ki-67 was detected via IHC. Representative images from each cohort are shown. D, Tumors
fromeach cohort as inAwere collected 4 hours after the last treatment dose andwere lysed and subjected to immunoblottingwith the indicated antibodies. E,Signal
intensity of pMEK, pERK, and DUSP6 inDwas quantified using densitometry analysis. Data, mean� SEM. n.s., not significant; � , P < 0.05; �� , P <0.01; ����, P < 0.0001,
unpaired Student t test.
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to MEKi, including, in addition to those upstream elements already
described, upregulation of TCR-CD3 signaling and potassium chan-
nels. Besides the elevated hotspot RTK, phosphatase SHP, and PI3K/
AKT pathway, the TCR/CD3 complex component ZAP-70 can phos-
phorylate adapter molecules, including LAT, that recruit RAS-GEF
(SOS) and lead to activation of ERK signaling (49). Furthermore,
potassium channels are also reported to trigger ERK activation,
thereby promoting cell proliferation and cell cycle (50). Our results
demonstrate that the activity of potassium channel–related kinases is
increased after MEKi treatment for 24 hours, which is consistent with
the observation that the expression of potassium channel–related
genes (KCNJ13, KCNJ8, and KCNV1) is upregulated in response to
MEK inhibition (PD0325901; ref. 13). Our findings that adaptive
upregulation of TCR-CD3 signaling and potassium channels occurs
in response to MEK inhibition prompt additional, future investiga-
tions to more fully elucidate the roles of these molecules in mediating
adaptive resistance to MEK inhibition, which might open promising
pathways for novel combinatorial therapeutic approaches in the
treatment of cancer driven by aberrant ERK signaling. Nonetheless,
our current findings of the efficacy of combined MEK and SHP2
inhibition have immediate translational implications that might
inform future clinical trials for patients with MPNST harboring NF1
alterations. Further studies will be necessary to determine the effects of
those and other combinations on the tumor immune microenviron-
ment using fully immune-competent models.
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