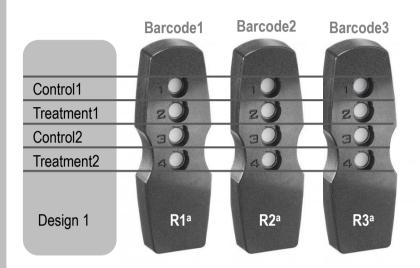


PamGene kinase assay: Experiment design

Basic experiment design and sample annotations are provided as a guideline to successful PamChip assays

PamGene's Approach

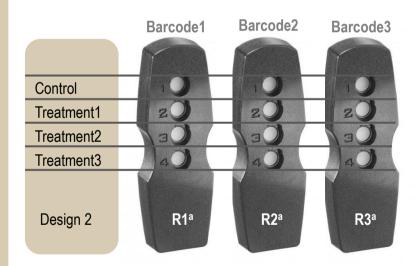

PamGene has optimized two basic experiment designs that can be adapted for a wide variety of guestions. The basis of these designs are PamChip (Barcode) pairing, where the 2 or 4 conditions being compared are paired on the same PamChip.

Design 1 applications

Comparing 2 models^b with the same treatment vs. control, or different treatments vs. control (E.g.: in vitro treatment of cell cultures off chip or ex vivo spike-in of cell lysates on chip)

Comparing 2 models^b with different genotypes or phenotypes (E.g. wild-type and mutant, or disease and normal)

Time course of the same treatment in the same model^b with time-matched controls (E.g.: in vitro treatment of cell cultures off chip)



Design 2 applications

Comparing multiple treatment conditions in the same model^b (E.g.: in vitro treatment of cell cultures off chip or ex vivo spike-in of cell lysates on chip)

Comparing different models^b with different genotypes or phenotypes (E.g. wild-type and mutants, or diseased and normal)

Time or concentration course of the same treatment in the same model^b (E.g.: in vitro treatment of cell cultures off chip)

a R1, R2, R3

Refer to Replicates. These can be Technical replicates (1 lysate on 3 arrays) or Biological replicates (3 lysates on 3 arravs)

b Models

Refer to the model system used, including but not limited to, cell lines, tumour tissue, PDX, mouse models etc.

Control and Treatments

Refer to the conditions in the study, see Applications Tables for examples

Sample annotations should include the "treatment" details and the generic annotation as shown

